単層カーボンナノチューブの

3次非線形感受率の直径依存性

甲南大院自然科学¹,甲南大量子ナノ研²,首都大東京³,

産総研ナノテク⁴, 情通機構未来 ICT⁵

清原由美江¹,市田正夫^{1,2},宮田耕充^{3,4},片浦弘道⁴,齋藤伸吾⁵,安藤弘明^{1,2}

Diamater dependence of third-order nonlinear optical susceptibilities in single-walled carbon nanotubes

Konan Univ.¹, Konan Univ. QNL², Tokyo Metropolitan Univ.³, AIST⁴, NiCT⁵ Y. Kiyohara¹, M. Ichida^{1,2}, Y. Miyata^{3,4}, H. Kataura⁴, S. Saito⁵, H. Ando^{1,2}

We have measured third-order nonlinear susceptibility ($\chi^{(3)}$) of semiconducting single-walled carbon nanotubes (SWNTs) by Z-scan method. The imaginary part of $\chi^{(3)}$ value (Im $\chi^{(3)}$) resonantly enhances to the absorption (α) peak of the exciton transition in semiconducting SWNTs. The figure of merit (Im $\chi^{(3)}/\alpha$) increase with increasing tube diameter. This results can be explained by the excitonic enhancement of nonlinearity.

1. はじめに

単層カーボンナノチューブは、1次元電 子系かつπ電子共有系であることから、 大きな光学非線形性を持つことが期待さ れている。これまでの単層カーボンナノ チューブの虚部の3次非線形感受率

 $(Im \chi^{(3)})$ の測定から、 $Im \chi^{(3)}$ は吸収帯の ピーク付近で共鳴的に増大することがわ かっている。また励起子効果が強く現れ るため、半導体第 1 遷移吸収帯 (S_1 吸収 帯)では、半導体第 2 遷移吸収帯 (S_2 吸収 帯)では、半導体第 2 遷移吸収帯 (S_2 吸収 帯)や金属部分の吸収帯 (M_1 吸収帯)より、 $Im \chi^{(3)}$ は約 1 桁大きくなる[1]。一方、 $\chi^{(3)}$ の値はチューブの直径に依存するという 理論的予測[2]があるが、実験的にはまだ よくわかっていない。

ナノチューブの吸収スペクトルに現れ

る吸収帯は、チューブ径に依存して変化 する。従って測定波長を変えることによ り非線形感受率の直径依存を調べること ができる。本研究では、異なる平均チュ ーブ直径を持つ試料を混合し、広い直径 分布範囲を持った「混合試料」を用いて、 非線形感受率の測定を行った。混合試料 では広い直径分布範囲の測定が可能であ る。また広い波長範囲で吸収がほぼ一定 となるため、実験条件をほとんど変えず に、一つの試料で精度よく測定すること ができる。実験では Z-scan 法で単層カー ボンナノチューブの $\text{Im} \chi^{(3)}$ の測定を行い、 その直径依存性について調べた。

試料の位置Z
図1 実験装置の概念図

2. 実験方法

平均チューブ直径 1.35nm, 1.15nm, 1.04nm の試料を混合し、石英基板上で薄 膜化させた試料を用意した。

3 次非線形感受率の測定には Z-scan 法 [3]を用いた。Z-scan 法とは試料の位置 Z を動かす(scan させる)方法である。図1に 実験装置の概念図を示す。レーザーから 出た光パルスは、レンズ、試料、アパー チャー、の順に通り、その透過光を検出 している。試料は、レンズで光がしぼら れているため、単位面積あたりの光強度 が異なるところを動く。アパーチャーを 開けて測定(open 配置)すると Im χ⁽³⁾に関 係する量である非線形吸収率βを、閉め て測定 (closed 配置) すると $\operatorname{Re} \chi^{(3)}$ に関係 する量である非線形屈折率γを求めるこ とができる。励起レーザーには、パルス 幅 150fs で広い波長範囲が出力できる OPA を用いた。また Re $\chi^{(3)}$ の値がすでに 報告されている CS, との相対測定によっ て、ナノチューブの Im $\chi^{(3)}$ を求めた。

3. 実験結果と考察

図2は試料の吸収スペクトルである。 図中の破線、一点鎖線、点線はそれぞれ

図2 試料の吸収スペクトル

平均チューブ直径が 1.35nm, 1.15nm, 1.04nm である。これらの試料を混合させ たものが混合試料で、図中実線で示して いる。混合試料の S₁吸収帯は 0.6~1.1eV、 S2吸収帯は 1.1~1.6eV に観測できる。こ の S1 吸収帯のエネルギー範囲は、チュー ブ直径 1.6~0.9nm に相当する。1 つの試 料中に広い直径分布範囲を持つので、よ り正確に直径依存性を測定することがで きる。図 3(a)および(b)に、光子エネルギ -0.89eV で測定した、アパーチャーopen 配置でのナノチューブ 混合試料 と、ア パーチャーclosed 配置での CS2 の測定結 果を示す。どちらの図も縦軸は規格化透 過率、横軸は試料の位置 Z である。 図 3(a) では単位面積当たりの光強度が最大にな る Z=0 でナノチューブの非線形な吸収減 少に対応した透過率の増大が見られる。 このとき透過率は

$$T(z) = 1 - \frac{\Delta \Phi_0^{\rm Im}}{2\sqrt{2}(1 + (z/z_0)^2)}$$
(1)

$$\Delta \Phi_0^{\rm Im} = \beta I_0 L_{eff} \tag{2}$$

$$z_0 = \frac{\pi w_0^2}{\lambda} \tag{3}$$

$$L_{eff} = (1 - e^{-\alpha_0 L}) / \alpha_0$$
 (4)

と表わすことができる。ここで、 α_0 は線 形吸収係数、L は試料の厚さ、 w_0 はビー ム直径である。これらの式を使ってフィ ッティングするとパラメータ $\Delta \Phi^{Im}$ から、 非線形吸収係数 β を求めることができる。 また β (MKS)と Im $\chi^{(3)}$ (cgs)の間には

Im
$$\chi^{(3)}(\text{esu}) = \frac{c n_0^2 \lambda}{480 \pi^3} \beta(\text{m}^2/\text{W})$$
 (5)

の関係があり、 $Im \chi^{(3)}$ を求めることができる。しかし本研究ではより精度よく測定するために、 CS_2 との相対測定を行った[4]。

図 3-(b)に示すように、CS₂ は屈折率が 減少するため、見かけ上透過率は Z<0 の 部分で減少し、Z>0 では増加する。Closed 配置の透過率は、

(a) open 配置、ナノチューブ
(b) closed 配置、CS2

$$T(z) = 1 - \frac{4\Delta \Phi_0^{\text{Re}}(z/z_0)}{\left[1 + (z/z_0)^2\right] \left[9 + (z/z_0)^2\right]}$$
(6)

$$\Delta \Phi_0^{\text{Re}} = \frac{2\pi}{\lambda} \gamma I_0 L_{eff} \tag{7}$$

と表され、また γ と $\operatorname{Re}_{\chi}^{(3)}$ の間には

$$\operatorname{Re} \chi^{(3)}(\operatorname{esu}) = \frac{c n_0^2 \lambda}{120 \pi^2} \gamma(\mathrm{m}^2/\mathrm{W})$$
(8)

しかし CS_2 については $\operatorname{Re}_{\chi}^{(3)}$ の値はわ かっているので、これらの式を用いて、 同一条件で測定したチューブの $\operatorname{Im}_{\chi}^{(3)}$ を

$$\operatorname{Im} \chi_{SWNT}^{(3)} = \left(\frac{\Delta \Phi_{0,SWNT}^{Im}}{2\Delta \Phi_{0,CS_2}^{Re}}\right) \left(\frac{L_{CS_2}}{L_{eff,SWNT}}\right) \left(\frac{n_{0,SWNT}^2}{n_{0,CS_2}^2}\right) \left(\frac{I_{0,CS_2}}{I_{0,SWNT}}\right) \times \operatorname{Re} \chi_{CS_2}^{(3)}$$
(9)

のように求めた。ここで $\Delta \phi$ はチューブ と CS₂のフィッティングパラメータ、L は 試料の厚さ、 n_0 は屈折率、 I_0 は光強度で ある。CS₂の Re $\chi^{(3)}$ の値はすでに報告され ている-29×10⁻¹⁴[esu]という値を用いた[4]。 図 3(a)(b)から求まる 0.89eV でのナノチュ ーブ混合試料の Im $\chi^{(3)}$ の値は-2.1× 10⁻⁸[esu]である。

混合試料の $\text{Im}_{\chi}^{(3)}(黒丸)$ を広いエネル ギー範囲で測定した結果を図 4 中の黒丸 で示す。図中の実線は、試料の吸収スペ クトルである。吸収のピーク付近である 0.7eV で、 $\text{Im}_{\chi}^{(3)}$ も共鳴的に増大しその値 は-6.1×10⁻⁸であった。

吸収係数がチューブの濃度に比例する と仮定すると、 $\chi^{(3)}/\alpha$ はチューブ 1本当 たりの $\chi^{(3)}$ に比例する量と見なすことが できる。また、測定光子エネルギーはチ ューブ直径と対応付けることができる[5]。 図 5 は横軸をチューブ直径、縦軸を $Im \chi^{(3)}/\alpha$ でプロットし、直径依存性を示 したものである。直径が大きくなるほど、 $Im \chi^{(3)}/\alpha$ の値も大きくなる傾向にある。 最小二乗法でフィッティングすると、お よそ直径の 6 乗となった。 $Im \chi^{(3)}$ の直径依 存性の理論的予測は直径の 4 乗であり[1]、 実験結果はこれよりも強い。

直径依存性の起源を、単純な二準位系 $\chi^{(3)}/\alpha \propto \mu^2 T_1 T_2$ (10) のように記述できる。ここで、 μ は双極 子モーメント、 T_1 は寿命、 T_2 は位相緩和 時間である。 S_1 吸収帯では T_1 は直径 dに

図4 Im χ⁽³⁾のエネルギー依存性

図5 チューブ直径と $Im \chi^{(3)}/\alpha$ の関係

依存し、直径の大きなチューブほど緩和 時間が長いことが報告されており[6]、T₁ はおよそ直径 dに比例している。T₂ には T₁ と同様の直径依存性があると仮定する と、本研究での $\chi^{(3)}/\alpha$ の実験結果から μ は d^2 に比例することになる。つまり直径 dが大きくなれば μ も大きくなる。双極 子モーメント μ を励起子の拡がりと仮定 するなら、これは直径が大きくなれば励 起子の拡がりが大きくなることを示唆し ている。

4 まとめ

Z-scan 法を用いて 3 次非線形感受率 Im $\chi^{(3)}$ の測定を行い、Im $\chi^{(3)}/\alpha$ の直径依存性について調べた。試料には平均チュ ーブ直径の異なる 3 つの試料を混合させ た混合試料を用いた。混合試料は吸収が 大体一定となるため測定条件をほとんど 変えずに実験できる。また一つの試料中 で広い直径分布範囲を持つことから、正 確に直径依存性を調べることができる。 測定結果はチューブ直径 *d* が大きくなる と Im $\chi^{(3)}/\alpha$ も大きくなる傾向があった。

<参考文献>

- [1]M. Ichida et al., proc. of ICPS06, TuA3k. 2 (2006)
- [2] Vl. A. Margulis et. al., Physica B 245, 173 (1998).
- [3] M. Sheik-Bahae et al., IEEE J. Quantum Electron.26, 760 (1990)
- [4]A. Maeda et al., Phys. Rev. Lett., 94, 047404 (2005)
- [5]M. Ichida et al., Phis. Rev. B65, 241407 (2002)
- [6] M. Ichida et al., J. Phys. Soc. Jpn. 73, 3479 (2004)