PbI₂ナノ薄膜における励起子重心運動量子効果の制御 :励起子分散関係の決定

阪市大院工^A、阪府大院工^B、CREST-JST^C 横辻悠太^A、大畠悟郎^A、金大貴^A、石原一^{B,C}、中山正昭^A

Controls of the center-of-mass quantization effect on exciton in PbI₂ nano-films : Determination of the excitonic dispersion relation.

Y. Yokotsuji^A, G. Oohata^A, D. Kim^A, H. Ishihara^{B,C}, and M. Nakayama^A Department of Applied Physics, Osaka City University^A, Department of Physics and Electronics, Osaka Prefecture University^B, CREST-JST^C

We have systematically controlled the center-of-mass quantization effect on excitons in layered-compound PbI₂ ultra-thin films by precisely changing the layer thickness 7 to 20 monolayer. The crystalline PbI₂ thin films that are fully oriented along the *c* axis are prepared with a vacuum deposition method. It was confirmed that the surface roughness of prepared thin films corresponds to one monolayer owing to the van der Waals interaction along the *c* axis peculiar to the layered compound, which is advantageous for the realization of center-of-mass quantization. Optical spectra such as absorption, transmittance, and reflectance clearly exhibit oscillatory structures originated from the quantized excitonic states with the quantum number up to 15: the quantization-energy range up to ~130 meV from the energy of bulk exciton. From the analysis of the systematic results of center-of-mass quantization, we have determined the excitonic dispersion relation of PbI₂, which is well explained by a tight binding exciton model instead of a usually-used effective-mass model.

1. はじめに

これまで半導体における励起子量子閉じ込 め効果について様々な研究が行われてきた。 特に近年では、励起子重心運動閉じ込め状 態において、光学非線形性の特異な増幅やそ の制御、また、量子もつれ光子対の高効率発 生が期待できることなどの理論的予測が報告 されており、注目を集めている[1,2]。そこで、 我々は励起子の重心運動閉じ込め状態を制 御することを目指して研究を行ってきた。これ を実現するために着目した物質が PbI₂ である。 PbI₂ は層状半導体であり、層間は van der Waals 力で結合しているために平坦性の良い 薄膜の作製が可能であり、膜厚の制御性に優 れている。また、励起子ボーア半径は 1.9 nm と比較的小さく、励起子が安定に存在できる 物質である。このような性質から、PbI2 は励起 子の重心運動閉じ込め効果を制御するため の物質として非常に適していると考えられる。 これまで我々は真空蒸着法により PbI2 薄膜を 作製し、膜厚 10 nm 程度の薄膜において励起 子の重心運動閉じ込め状態が観測されること を報告した。また、その振る舞いは tight-binding exciton modelを用いて説明でき ることを提案した[3]。

本研究では、真空蒸着法による膜厚制御の精度を向上させて、1 monolayer(ML:約0.7 nm)単位で膜厚を制御した PbI₂ 薄膜を系統的

に作製することに成功した。また、一連の PbI2 薄膜の励起子遷移光学スペクトルから、励起 子の重心運動量子化状態を詳細に観測し解 析を行った。その結果、PbI2 薄膜における励 起子の分散関係を、実験的に示すことに成功 した。さらに、得られた分散関係について、 tight-binding exciton model に基づいて解析し た。

2. 試料と実験方法

本研究で用いたPbI₂薄膜は、真空蒸着法に より作製した。蒸着源は市販のPbI₂粉末(純度 99.99%)、基板にはへき開した(001)NaClを用 いた。基板温度は100°C、蒸着速度は0.05 nm/s、真空度は3.0×10⁻⁶ Paである。膜厚は 7~20 ML(4.9~14 nm)の間で精密に1 ML単位 で変化させた。X線回折パターンより、作製し たPbI₂薄膜は*c*軸方向に配向性長していること を確認している。作製したPbI₂薄膜の表面状 態については、原子間力顕微鏡(AFM)を用い て観察した。光学特性に関しては、10 Kにお ける反射スペクトル、透過スペクトル、吸収ス ペクトルの測定を行った。

3. 実験結果と考察

図1(a)は、作製したPbI2薄膜(8 ML)の表面 AFM像を示しており、図1(b)は、図1(a)に引か れた直線上における断面図を表している。こ の図から、薄膜表面がテラス状の構造をして おり、その段差は約0.7 nmであることが確認で きる。即ち、1 MLの精度で、極めて精密に膜 厚制御ができていることがわかる。

次に、作製したPbI2薄膜の光学特性につい て述べる。図2は10 Kで測定した透過スペクト ル(点線)と反射スペクトル(実線)である。nで 示した整数は閉じ込め量子数であり、破線は

線)と反射スペクトル(実線)。n は閉じ込め量 子数を表し、破線はそれぞれに対応するエネ ルギーを表す。

各量子状態に対応するエネルギーを示している。どちらのスペクトルにおいても、励起子の 重心運動量子化状態による振動構造が確認 できる。ここで閉じ込め量子数が奇数の状態 しか観測されないのは、長波長近似条件下で の光学遷移選択則によるものである。[4]

図3は、膜厚6~8 MLの5つの試料について の吸収スペクトルである。この図より、膜厚が 薄くなるにしたがって、一連の吸収ピークが高 エネルギーシフトする様子がわかる。この振る 舞いは、重心運動閉じ込め効果によるもので ある。ここで注目すべきことは、膜厚が整数 MLの試料については、量子化状態による吸 収がシングルピークで観測されているが、膜 厚が非整数MLの試料については、吸収がダ

ペクトル。nは閉じ込め量子数を表す。

ブルピークになっていることである。例えば、 7-8 MLで示したスペクトルに着目すると(試料 の平均膜厚は7.5ML)、8 MLのn = 3及び、7 MLのn = 3のピークエネルギーと一致するダ ブレット構造が観測されている。このように、吸 収スペクトルにおいてピークシフトが離散的に 生じる様子が明確に観測できており、これは 膜厚1 MLの違いを明確に反映している。我々 は、この性質を利用し、膜厚が整数MLの試 料を選別することによって、ML単位での精密 な膜厚制御を実現することに成功した。

図4に、膜厚を7~20 MLの範囲で精密に制 御したPbI₂薄膜試料について、系統的な吸収 スペクトルを示す。全ての試料において励起 子の重心運動量子化状態による吸収ピーク が観測されている。そのエネルギー範囲は、 バルク結晶での励起子遷移エネルギー範囲は、 バルク結晶での励起子遷移エネルギーより約 130 meV高エネルギー側まで広がり、他の物 質における観測結果(例えばCuCl薄膜では約 30 meV)[4]と比べると非常に広い。また20 MLの試料に着目すると、矢印で示したように 閉じ込め量子数が15の状態まで観測される。

励起子量子化状態を直感的に理解するため に、膜厚7~16 MLの試料について吸収スペク トルを縦軸エネルギー、横軸膜厚として1 ML

図 4. 膜厚 7~20ML の PbI₂薄膜における吸収スペ クトル。n は閉じ込め量子数を表す。

図 5. PbI₂薄膜における吸収スペクトルの膜厚依存 性(7~16 ML)。矢印はそれぞれの閉じ込め量子数 に対応する吸収ピーク位置を表す。

ずつ並べたイメージプロットを図5に示す。ここ で、矢印はそれぞれの閉じ込め量子数に対応 する吸収ピークを示している。この図から、膜 厚1 MLずつの吸収ピークの移り変わりを、一 連の閉じ込め量子数に対して系統的に観測で きていることがわかる。

最後に、励起子の分散関係について議論 する。膜厚7~20MLの全ての試料における吸 収スペクトルより観測されたピークに対して、 縦軸にエネルギーをとり、その吸収ピークに対 応する量子化波数(K_n)を横軸にとってプロット したものが図6である。尚、量子化波数は次の 式で表される。

$$K_n = n\pi / (L - 2L_{\rm DL}) \tag{1}$$

ここで、Lは膜厚、nは閉じ込め量子数、L_{DL} はdead layerの厚さである。L_{DL}は現象論的パ ラメータであり、図6では0.82 nmとしている。こ の値は1 MLの厚さとほぼ同等であり、妥当な 値であると考えられる。図6から、ブリュアンゾ ーン端付近までの励起子分散関係を実験的 に求めることに成功したことが見て取れる。図 6に示した点線は、有効質量近似による計算 曲線である。低波数領域では、有効質量近似 でも実験値と一致するが、高波数領域での振 る舞いについては明らかに説明できないこと がわかる。次に、(2)式で表現される tight-binding exciton modelを用いて分散関係 のフィッテングを行った。その結果を実線で示 している。

$$E(n) = E_0 - 2t\cos(K_n) \tag{2}$$

ここで、 E_0 は層間の相互作用を考えないとき の励起子のエネルギー、tはtransfer energyで ある。フィッティングでは、 L_{DL} 、 E_0 、t の3つを パラメータとして行った。実験より求まった分 散関係は、この理論曲線と良い一致を示し、 tight-binding exciton modelを用いてよく説明で きていると言える。また、フィッティングより求 められたtransfer energyより、 Γ 点での励起子 有効質量を計算した。その結果、c軸方向に対 しての有効質量は2.35±0.02 m₀と求められた。 この値はバルク結晶において、共鳴ブリュアン 散乱により求められた有効質量の値である2.3 m₀とよく一致している[5]。このことからも、本 研究で得られた励起子の分散関係が妥当で あることが分かる。

図 6. 吸収スペクトルから得られた励起子の重心 運動量子化状態のピークエネルギー(縦軸)と、 そのピークに対応する量子化波数(横軸)の関 係。点線は有効質量近似、実線は tight-binding exciton モデルでの計算曲線を表す。

4. まとめ

PbI₂薄膜を膜厚1 ML単位で精密に作製し(7 ~20ML)、励起子状態を制御することに成功 した。それら試料の吸収スペクトルより、励起 子重心運動量子化状態の膜厚による変化を 系統的に観測することができた。これにより、 PbI₂薄膜における励起子分散関係をブリュア ンゾーン端付近まで実験的に決定し、 tight-binding exciton modelで説明できることを 明らかにした。

謝辞

本研究は、科学研究補助金学術創成研究費 (No.17GS1204)の補助のもとでおこなわれた。

参考文献

H. Ishihara, K. Cho, K. Akiyama, N. Tomita, Y. Nomura, and T. Isu, Phys. Rev. Lett. **89**, 017402 (2002)
M. Bamba, and H. Ishihara, Phys. Stat. Sol. (c) **3**, 3800 (2006)

- [3] M. Nakayama, and D. Kim, H. Ishihara, Phys. Rev. B 74, 073306 (2006)
- [4] Z. K. Tang, A. Yanase, Y. Segawa, N. Matuura, and K. Cho, Phys. Rev. B **52**, 2640 (1995)
- [5] T. Goto, J. Phys. Soc. Jpn. 51, 3 (1982)