# Nb<sup>4+</sup>をドープしたアナターゼ型二酸化チタン単結晶の電気伝導

土田浩輔、山口裕、野木大輔、関谷隆夫、栗田進 横浜国立大学大学院 工学研究院

Electrical conductivity on Nb<sup>4+</sup>-doped anatase titanium dioxide single crystals

Kohsuke Tsuchida, Yutaka Yamaguchi, Daisuke Nogi, Takao Sekiya, Susumu Kurita

#### Abstract

Anatase titanium dioxide single crystals doped Nb<sup>4+</sup> up to 1mol% have been grown by chemical vapour transport method. We have measured temperature dependence of optical absorption and electrical conductivity. In optical absorption spectra, a broad absorption was observed in the lower energy region than 2.5 eV. and a weak absorption band was observed at around 2.2 eV. Temperature dependence of electrical conductivity reveals that an activation energy of donor level is about 19 meV.

# 1.序論

光触媒反応は、触媒材料に照射された光 が内部で吸収され、それにより生成された キャリアが表面に移動して起こる反応であ る。近年光触媒材料等で注目を集めている TiO<sub>2</sub> [c] t, rutile, anatase, brookite  $03 \supset 0$ 同質多形が知られている。3つの同質多形 の中では rutile 型が安定相で研究報告も数 多くなされているが、anatase 型もその光触 媒効率の高さから注目されている。結晶内 での光励起 - 緩和過程や光によって生成さ れたキャリアの振舞い、欠陥や不純物が光 触媒材料に及ぼす影響は、光触媒反応と密 接に関わっていると考えられる。我々は育 成が困難とされてきた anatase 型 TiO2 単結 晶の育成と、その単結晶を水素、酸素雰囲 気下で熱処理を加えることによって欠陥の 量を制御することに成功している。

Fig.1 に anatase 型の結晶構造を示す。結 晶構造は正方晶系で、Ti<sup>4+</sup>は 6 個の O に囲 まれている。本研究は Nb<sup>4+</sup>をドープした



anatase型TiO<sub>2</sub>を得ることとドープされた キャリアの振る舞いに対する知見を得るこ とを目的とした。ドープしたNb<sup>4+</sup>はTi<sup>4+</sup>の サイトを占めると考えている。また、多量 の不純物をTiO<sub>2</sub>に加えることでその不純物 に依存して電気・光学特性が変化する。こ れまで酸素欠陥を制御し偏光吸収スペクト ルが大きく変化することを明らかにした (Fig.2)[1]。



## 2.実験

試料となる Nb<sup>4+</sup>をドープした anatase 型 TiO<sub>2</sub> 単結晶を化学輸送法にて育成した。 rutile 型TiO<sub>2</sub>粉末に対しNbO<sub>2</sub>粉末の濃度を 変化させて混合したものを焼成し同溶体化 したものを数種類用意した。これを原料と し、NH<sub>4</sub>Clを輸送剤として石英ガラスア ンプル中に真空封入し、温度勾配を持つ 水平管状電気炉で2~3週間保持した。 得られた単結晶の(010)面を両面鏡面研 磨し光学測定用試料とした。

偏光吸収スペクトル測定は、光源にキセ ノンランプ、タングステンランプを用いて、 1.7eV~3.5eVのエネルギー領域で測定した。 試料の温度は He フロータイプのクライオ スタット(Oxford,CF1204)にて温度調節器で 制御し、80K、130K、300Kでの測定データ を得た。

電気伝導度測定は直流四端子法を用いて

測定した。測定端子は両面鏡面研磨した試 料の結晶表面に銀ペーストで銅線( =0.06mm)をとりつけた。試料の長辺方向 に定電流源(KEITHLEY 220)を用いて 1mA の定常電流を流し、デジタルメーター(HP 34401A、KEITHLEY 6514)で測定した。サ ンプル温度はクライオスタット (Oxford,CF1204)内にて温度調節器で制御し、 4K~300Kの範囲を1K刻みで測定データを 得た。

#### 3.結果及び考察

これまでに Nb<sup>4+</sup>含有量が 1mol%までの 単結晶育成に成功した。得られた試料を Fig.3 (a)、(b)に示す。



Fig.3 測定に用いた試料(加工前)
(a) 試料 A (NbO₂ 含有量 0.001mol%)
(b) 試料 B (NbO₂ 含有量 1mol%) 1mm 方眼紙

Nb<sup>4+</sup>の含有量が多いと濃青色、少ないと淡 青色を呈した。また、X 線回折(背面反射ラ ウエ法)により結晶構造が anatase 型である ことを確認した。

試料 B (NbO<sub>2</sub> 含有量 1mol%)の E//c、E c の偏光吸収スペクトルの温度依存性を Fig.4 に示す。両偏光で 2.7eV から低エネルギー 側へかけて吸収が増加する。この吸収は温 度の低下により強度が減少した。これはフ リーキャリア吸収であると考えている。こ れに加えて約 2.2eV 付近に弱い幅広なバン ドが見られる。これらの吸収により単結晶 の濃青色になる。

通常、異元素ドープのない anatase 型 TiO<sub>2</sub> 単結晶の吸収端は酸素欠陥が少ない場合は 指数関数型の形状を示す[2]。今回の Nb<sup>4+</sup>を ドープした試料では吸収端近傍に肩が観測 された。Fig.5 に吸収端近傍の温度依存性を 示す。偏光により吸収端の位置が変化する ことがわかる。E c、E//c ともに吸収曲線 は温度低下とともに高エネルギー側へシフ トした。温度の低下とともにシフト量は減 少した。

純粋な anatase 型 TiO<sub>2</sub>単結晶は 90K 以下で は吸収端はシフトしないことが報告されて いる[2]。130K と 80K の吸収曲線がほぼー 致していることから、Nb<sup>4+</sup>をドープした場 合も同様であると考えられる。E c で吸収 端近傍に鋭いピークの存在が見られた。こ れは温度の低下とともに鋭くなることがわ かる。そのピークの位置も温度によりシフ トする。これらの吸収帯は酸素欠陥を含む dark-blue、dark-green の単結晶試料のものに 類似している(Fig.2)[1]。本研究より Nb<sup>4+</sup>含 有量が小さい試料の場合には現われない[3] ので Nb<sup>4+</sup>含有量に依存すると考えている。

300K

130K

80F



Fig.4 光吸収スペクトルの温度依存性 (試料 B)



Fig.6,7 に電気伝導度の温度変化を示す。加 えた Nb<sup>4+</sup>は結晶中で Ti のサイトを占めると 考えると、Nb<sup>4+</sup>は Ti<sup>4+</sup>と比べ 1 つ多く d 電 子を持ち、バンドギャップ内にドナーレベ ルを形成すると考えられる。その結果、高 抵抗である anatase 型 TiO<sub>2</sub> 単結晶の伝導度 が大きくなる。As-grown 結晶における電気 伝導度のオーダーが  $10^{-3}\Omega^{-1}$ cm<sup>-1</sup> であるのに 対し  $10^{3}\Omega^{-1}$ cm<sup>-1</sup> のオーダーの結果が得られ た。

300K から 150K までは温度低下とともに伝 導度は増加し、その後 50K までは一定に保 つが更に温度を下げていくと減少していっ た。このことは不純物であるドナーレベル の準位の影響であると考える。ドナーレベ ルの準位の深さを見積もるためにアレニウ スプロットを行った(Fig.7 の点線)。その結 果ドナーレベルの準位の深さは約 19meV と 求められた。



Fig.7 電気伝導度の温度依存性(ln() vs 1000/T)



Fig.6 電気伝導度の温度依存性(試料 B)

4.まとめ

今回我々は Nb<sup>4+</sup>をドープした anatase 型 TiO<sub>2</sub> 単結晶の育成に成功し、これを試料と して吸収スペクトルと電気伝導度の温度変 化を測定した。その結果純粋な anatase 型 TiO<sub>2</sub> 単結晶の吸収スペクトルの形状や伝導 度の強度に影響を与えることがわかった。 今後は Nb<sup>4+</sup>の濃度を変えた anatase 型 TiO<sub>2</sub> 単結晶の測定を行い、濃度による各スペク トルの影響を詳しく調べていく予定である。

### 5 . 参考文献

[1]T. Sekiya, T. Yagisawa, N. Kamiya, D. D. Mulmi, S. Kurita, Y. Murakami, T. Kodaira, J. Phys. Soc. Jpn. **73** (2004) 703-710
[2]H. Tang, F. Levy, H. Berger, P. E. Schmid, Phys. Rev. **B 52** (1995) 7771-7774
[3]D. D. Mulmi, T. Sekiya, N. Kamiya, S. Kurita, Y. Murakami, T. Kodaira, J. Phys. Chem. Solids **65** (2004) 1181-1185