強相関有機ラジカル結晶 TTTA の2光子吸収による 発光と光誘起相転移

<u>今豊紀</u>、武田淳 横浜国立大学大学院 〒240-8051 横浜市保土ヶ谷区常盤台 79-5

Photoluminescence and Photoinduced Phase Transition in a Strongly Correlated Organic Radical TTTA Crystal Mediated by Two-Photon Absorption

Toyoki Kon and Jun Takeda

Department of Physics, Graduate of School of Engineering, Yokohama National University

Abstract

Photoluminescence and photoinduced magnetic phase transition in a strongly correlated system, an organic radical 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) crystal, were investigated under two-photon absorption with different photon densities. Below the threshold photon density to drive the phase transition, the diamagnetic phase shows a broad luminescence band with a large Stokes shift due to the self-trapped excitonic states, whose intensity obeys almost second power law of the excitation photon density. Above the threshold photon density, on the other hand, the diamagnetic low-temperature to paramagnetic high-temperature phase transition effectively takes place with a large conversion yield and a gigantic optical response instead of an occurrence of the photoluminescence, indicating that the phase transition is optically induced by two-photon absorption. The schematic model for the photoinduced phase transition under one- and two-photon absorptions is qualitatively discussed.

1. 序論

光誘起相転移現象は、電荷・スピン・軌 道・格子などの物理量が絡み合いその協同 現象として多様な物性を示すため、近年多 大な注目を浴びている。また、光誘起相転 移自体が非線形現象であることから、巨大 かつ超高速の光応答を発現させる基本原理 の1つとして捉えることもでき、応用的見 地からも興味深い。

このため、光誘起相転移現象は、電荷移 動型錯体やスピンクロスオーバー錯体など 様々な物質において、(吸収の強い)1光 子吸収過程を通して精力的に研究されてき た。これまでの様々な実験事実から、光誘 起相転移が励起状態を介した協同現象とし て起こることは明らかであるが、1光子吸 収過程においては吸収したエネルギーの一 部もしくは大部分が熱へ変換するため、熱 が何らかの形で関与した相転移の側面を完 全には排除し切れていない。したがって、2 光子吸収過程のような純光学的な過程を通 した光誘起相転移研究が強く望まれる。

強相関有機 ラジカル 1,3,5-trithia-2,4,6-triazapentalenyl (TTTA) は、 室温を挟む広い温度領域において常磁性相 (高温相)と反磁性相(低温相)が磁気双 安定を示す物質である[1]。近年、TTTA 結 晶に1光子吸収領域の1ショットのナノ秒 パルスレーザーを照射することにより、閾 値を持って光誘起磁気相転移が生じること が見出された[2,3]。また、反磁性相・常磁 性相の最低励起状態(電荷移動型吸収帯) はいずれも可視域(1.7~2.0 eV)にあり、 他の代表的な光誘起相転移物質に比べ極め て大きいバンドギャップを持つ[4]。また、 電荷移動吸収帯を光励起することにより、 反磁性相・常磁性相いずれにおいても自己 束縛励起子状態からの発光が観測される [5,6]。このため、TTTA は、2 光子吸収過程 を用いた光誘起相転移研究に最適の物質で ある。

そこで本研究では、強相関有機ラジカル 結晶 TTTA を用いて、初めて純光学過程で ある2光子吸収により光誘起相転移を明ら かにすることを目指した。また、自己束縛 励起子発光過程のようなミクロな見地から マクロな光誘起相転移現象の理解を試みた。

2. 実験

TTTA は Wolmershäuser と Johann の方法 により合成し、真空昇華法により反磁性相 単結晶を育成した[7]。典型的な試料の大き さは、~1x0.3x0.1mm³である。

2 光子吸収に伴う発光スペクトルの測定 には、励起光源として Nd:YAG レーザー励 起 OPO システム(励起エネルギー0.56~ 1.24 eV、パルス幅 5 ns)を用いた。相転移 の閾値を超えない十分小さな励起強度で光 励起することにより、反磁性相結晶の自己 束縛励起子発光スペクトルを CCD 検出器 付分光器で測定した。また、励起光の偏光 は、分子スタック軸に垂直(E_{ex})と平行 (E_{ex})に設定した。

反磁性相→常磁性相の光誘起相転移の閾

値特性は、光誘起ラマン散乱測定から評価 した[2]。相転移を誘起する光源には Nd:YAG レーザー励起のOPO システムを用 い、励起エネルギー・励起密度を変化させ ながら1ショットの光照射を行った。光照 射後の試料のラマン散乱強度を、FT-Raman 分光計により測定した。この際、ラマン散 乱測定の励起光として Nd:YAG レーザーの 基本波を用いた。この波長は試料の透明領 域にあるため、試料表面だけでなく結晶全 体からの散乱強度を検出できる。

3. 実験結果および考察

図1にTTTA 反磁性相の2光子吸収(励 起エネルギー: *E*_{ex}= 0.85eV) による自己束 縛励起子発光強度の励起密度依存性を示す。 また、1光子・2光子吸収による発光のスペ クトル形状を挿入図に示す[5.6]。2光子吸収 による発光は、1 光子吸収のそれよりもピ ーク位置がレッドシフトしている。これは、 2 光子吸収の場合、発光が結晶の内部でも 生じるため、再吸収の効果を受けたからだ と考えられる。この点を除けば、2 光子吸 収による発光は1光子吸収のそれとよく一 致している。一方、発光強度は、励起密度 の2乗に比例して増加し、やがて飽和する。 励起密度依存性から、観測された反磁性相 の自己束縛励起子発光は、確かに2光子吸 収に伴う発光であることがわかる[8]。

図1TTTA 反磁性相結晶の2光子吸収に伴う自己束縛 励起子発光強度の励起密度依存性と発光スペクトル

図2に2光子吸収(1.17、0.85 eV)によ る反磁性相→常磁性相への相転移の変換割 合を示す。比較のため、電荷移動吸収帯を 1光子励起(2.33 eV)した場合の相転移の 変換割合も示す[2]。1光子・2光子吸収いず れの場合も閾値をもって相転移が生じる。2 光子吸収による相転移は1光子吸収のもの と比べ、(1)相転移の閾値が2桁大きい、 (2)~80%(結晶全体)という高い変換割 合を持つ、(3)閾値を超えると急激に相転 移が生じる、という特徴を持つ。また、2 光子共鳴から外れた低い励起エネルギー (~0.56 eV)では、励起密度をどんなに上げ ても相転移は生じない。

図 2 反磁性相→常磁性相の光誘起相転移の変換 割合の励起エネルギー依存性

図 3 に発光強度から見積もった 2 光子吸 収スペクトル(四角)と相転移の容易さ f(丸)の励起エネルギー依存性を示す。ま た、比較のため、1 光子吸収スペクトルを 破線で示す[9]。ここで、相転移の容易さ fは、閾値 I_{th} の値が小さいほど相転移がし易 いと考え、 $f = I_0/I_{th}(E_{ex})$; $I_0 = 1 \times 10^{18}$ photons/cm²と定義した。1 光子吸収のない ~1.2 eV 以下のエネルギー領域でも相転移

が生じている点、相転移のし易さ f が 2 光

子吸収スペクトルと一致することから、純 光学過程である2光子吸収により共鳴的に (光誘起)相転移が生じていることがわか った。

図 3 反磁性相→常磁性相の光誘起相転移の容易 さfの励起エネルギー依存性(丸)と反磁性相の2 光子吸収スペクトル(四角)

図4 TTTAにおける反磁性相→常磁性相の光誘起 相転移の定性的モデル

ここで、1 光子・2 光子吸収過程での光誘 起相転移の振る舞いの違いについて定性的 に説明する(図 4)。1 光子吸収過程の場合、 大きな吸収係数のため、結晶表面にのみ光 誘起相(常磁性相)のドメインが生成し相 転移が起こる。このため、結晶全体の~20% ほどしか相転移しない。一方、2 光子吸収 過程では、結晶表面だけでなく内部にもド メインが生成する。TTTA は分子間に S…S あるいは S…N のコンタクトによる強い 3 次元的なネットワークを形成している [4]。 このため、2 光子吸収により結晶内部にド メインが生成した場合、3 次元的な相互作 用を通して一気に巨大な光応答を持って相 転移が生じるものと考えられる。

図5 反磁性相の自己束縛励起子発光強度(四角) および反磁性相→常磁性相の光誘起相転移の変換 割合(丸)の励起密度依存性

最後に、図5に閾値前後の励起密度に対 する反磁性相の自己束縛励起子発光強度の 変化を示す(四角印)。ここでは、反磁性 相サンプルに 0.85 eV の励起エネルギーの 光を様々な励起密度で1ショット照射した。 その後、相転移を起こさない十分低い励起 強度(6x10¹⁷photons/cm²)で発光強度の測定 を行った。図からわかるように、反磁性相 の自己束縛励起子発光強度は、励起密度を 上げるにつれて閾値をもって減少する。ま た、その振る舞いは、光誘起ラマン散乱か ら求めた閾値特性(丸印)と極めてよい相 関があることがわかった。すなわち、マク ロな光誘起相転移の閾値特性は、自己束縛 励起子発光過程という局所的な見地からも 評価可能である。

4. 結論

強相関有機ラジカル結晶 TTTA を用いる

ことにより、純光学的な2光子吸収過程に よる光誘起相転移現象をはじめて観測する ことに成功した。反磁性相結晶に2光子共 鳴領域の光を照射すると、閾値以下の励起 密度では、まずは自己束縛励起子発光が観 測される。光誘起相(常磁性相)のドメイ ンが形成される程度に励起密度をあげてい くと、自己束縛励起子の発光強度は飽和・ 抑制する。励起密度を更にあげ閾値を超え ると、その発光強度は急激に減少し、(そ れに替わって)マクロな相転移が一気に巨 大な光応答を持って生じることを見出した。 本研究は、自己束縛励起子発光過程という 局所的な見地から、マクロな光誘起相転移 現象を観測した初めての例であると思われ る。

5.参考文献

[1]W. Fujita and K. Awaga: *Science*, **286**, 261 (1999).

[2]J. Takeda, M. Imae, O. Hanado, S. Kurita, M. Furuya, K. Ohno and T. Kodaira: *Chem. Phys. Lett.*, **378**, 461(2003).

[3]S. Oguri, O. Hanado, J. Takeda, M. Furuya, K. Ohno, S. Inoue and T. Kodaira: *J. Lumin.*, **115**, 283 (2005).

[4]K. Ohno, Y. Noguchi, T. Yokoi, S. Ishii, J. Takeda and M. Furuya: *ChemPhysChem*, 7, 1820 (2006).

[5] H. Suzuki, S. Oguri, <u>T. Kon</u>, T. Yokoi, S. Ishii,
K. Ohno and J. Takeda: *J. Lumin.*,(2007) accepted.

[6]Y. Takahashi, T. Suemoto, S. Oguri and J. Takeda, *Phys. Rev. B*, **74**, 193104 (2006).

[7]G. Wolmershäuser and R. Johann: *Angew. Chem. Int. Ed. Engl.*, **28**, 920 (1989).

[8]<u>T. Kon</u>, S. Oguri and J. Takeda: *J. Lumin.*,(2007) accepted.

[9]W. Fujita, K. Awaga, H. Matsuzaki, H. Okamoto, *Phys. Rev. B*, **65**, 064434 (2002).