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We theoretically study excitonic two-photon absorption in semiconducting carbon nanotubes
within an effective-mass approximation. Sharp absorption peaks appear at energies of the second
and fourth lowest exciton states below the interband continuum. The results are in good agreement
with recent experiments.

I. INTRODUCTION

Carbon nanotubes, which are rolled-up
two-dimensional (2D) graphite sheets, exhibit
strong exciton effects, mainly revealed by one-
photon absorption. Two-photon absorption
gives complementary information on excited
excitons which are inaccessible by one-photon
absorption. In this paper, we shall briefly re-
view our recent theoretical study on the two-
photon absorption spectrum of semiconduct-
ing carbon nanotubes within an effective-mass
approximation including exciton effects [1].

It was theoretically predicted that the
Coulomb interaction prominently affects opti-
cal absorption in semiconducting carbon nan-
otubes [2, 3]. The band gap is considerably en-
hanced and exciton binding energy is compa-
rable to but slightly smaller than this enhance-
ment. As a result, the intensity is focused on
exciton energy levels in linear absorption spec-
tra. This prediction was later confirmed both
theoretically [4–9] and experimentally [10–13].

Two-photon absorption has also been stud-
ied [14–21]. Photoluminescence experiments
with two-photon absorption revealed that dif-
ference between the energies of one- and two-
photon transitions is substantial, typically a
few hundred meV, leading to the clear conclu-
sion that the absorptions arise from excitons
[18–20]. Moreover, calculations with exciton
effects were performed and used for the esti-
mation of exciton binding-energy from exper-
imental one- and two-photon peaks.

II. MODEL AND METHOD

In a 2D graphite sheet shown in Fig. 1(a),
the conduction and valence bands consisting of
π states cross atK andK′ points and the elec-
tron motion around these points is described
well by a k · p equation corresponding to a
relativistic Dirac equation with vanishing rest
mass. Around the K point, for example, it is

given by [22–24]

γ(~σ · k̂)F(r) = εF(r), (1)

where F(r) is a two-component envelope func-
tion, the x and y coordinates are chosen in
the circumference and the axis direction, re-
spectively, as shown in Fig. 1(b), ε is an eigen
energy, γ a band parameter, ~σ = (σx, σy) the

Pauli spin matrix, and k̂ ≡ −i~∇ a wave vector
operator.

Electronic states for a nanotube with a suf-
ficiently large diameter are obtained by im-
posing the boundary condition around the cir-
cumference direction:

F(r + L) = F(r) exp
(

− 2πiν

3

)

, (2)

with L being a chiral vector shown in Fig. 1(a)
and ν an integer determined uniquely as ν = 0
or ±1 through na +nb = 3M + ν with integer
M , where na and nb are integers defined by
L = naa + nbb and a and b are the primitive
translation vectors shown in Fig. 1(a). The
energy bands become

ε±,n(k) = ±γ
√

κν(n)2 + k2, (3)

where + and − denote the conduction and va-
lence band, respectively, k is a wave vector in
the axis direction, and

κν(n) =
2π

L

(

n− ν

3

)

, (4)

with integer n and L = |L|. Around the K′

point the k·p equation is given by Eq. (1)
where ~σ is replaced by complex conjugate ~σ∗.
The boundary condition becomes Eq. (2) with
replacement ν → −ν.

A screened Hartree-Fock approximation is
used for interaction effect on the band struc-
ture and an attractive electron-hole interac-
tion is introduced by using the Coulomb inter-
action screened by a static dielectric function
[2, 3]. This approximation was shown to be
sufficient by calculations in which dynamical
effects are fully included [25, 26].
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FIG. 1: Schematic illustration of (a) 2D graphite
and (b) nanotube.

An exciton with the zero momentum is writ-
ten as

|u〉 =
∑

n

∑

k

ψu
n(k)c†

+,n,kc−,n,k|g〉, (5)

where c†
+,n,k and c−,n,k are the creation and

annihilation operators, respectively, with ±
indicating the conduction and valence bands
and |g〉 is the ground state. Solving an equa-
tion of motion [2, 3], ψu

n(k) and exciton energy
εu are obtained. The wave function ψu

n(k) is
an even or odd function of k, that is,

ψu
n(−k) = ±ψu

n(k). (6)

In the following, we shall confine ourselves
to the low-energy regime below the interband
continuum and therefore completely neglect
multi-exciton states such as bi-exciton. For
parallel polarization where the electric field is
given by

Ex = 0, Ey = E(e−iωt + eiωt), (7)

a two-photon energy-absorption rate per unit
length is given by β(ω)E4 with an absorption
coefficient

β(ω) =
4πe4

ω3A

∑

K,K′

∑

u

∣

∣

∣

∣

∣

∑

u′

〈u|v̂y|u′〉〈u′|v̂y|g〉
h̄ω − εu′

∣

∣

∣

∣

∣

2

×δ(2h̄ω − εu), (8)

where v̂y is a velocity operator in the axis di-
rection. Using typical scales of physical quan-
tities in nanotubes, a dimensionless absorp-
tion coefficient β̄(ω) is given by

β(ω) =
e4L5

8π3h̄γ2
β̄(ω). (9)

Then, we can see that the absorption coeffi-
cient is proportional to the fifth power of the
circumference length.

The velocity matrix elements for the K
point are given by

〈u′|v̂y|g〉 =
iγ

h̄

∑

n

∑

k

κν(n)
√

κν(n)2 + k2
ψu′

n (k)
∗
,

(10)
and

〈u|v̂y|u′〉 = −2γ

h̄

∑

n

∑

k

k
√

κν(n)2 + k2

×ψu
n(k)

∗
ψu′

n (k). (11)

Those for the K′ point are given by the com-
plex conjugate of the above with the replace-
ment ν → −ν. It can be seen from Eqs. (10)
and (11) that states with even parity are ex-
cited from the ground state by one-photon ab-
sorption and those with odd parity are excited
by two-photon absorption.

The strength of the Coulomb interaction
is characterized by dimensionless parameter
(e2/κL)(2πγ/L)−1 , which is the ratio of the
typical Coulomb energy e2/κL and the typi-
cal kinetic energy 2πγ/L, where κ is an effec-
tive dielectric constant. The band parameter
is related to hopping integral γ0 through γ =
(
√

3/2)aγ0 with lattice constant a=2.46 Å in
a nearest-neighbor tight-binding model. For a
rough estimate of the interaction strength, we
can use this relation with γ0 ∼ 3 eV and then
have (e2/κL)(2πγ/L)−1 ∼ 0.35/κ. The di-
electric constant κ describes effects of screen-
ing by electrons in σ bands, core states, and
the π bands away from the K and K′ points
and by the surrounding material if any. Its
exact value is not known, but we can expect
that κ is not so much different from 2.4 in bulk
graphite. Then, the interaction parameter lies
roughly in the range 0.1∼0.2.

The infinitely extending energy bands in Eq.
(3) should be cut off by an energy εc of the or-
der of the half of the π-band width 3γ0. There-
fore, εc(2πγ/L)−1 ≈ (

√
3/π)(L/a) =

√
3d/a,

with d being the diameter of the nanotube.
Since excitation energy exhibits only weak de-
pendence on the cutoff energy [3], we use a
typical value εc(2πγ/L)−1 = 10 corresponding
to diameter ∼ 1.4 nm in the followings. The
kinetic energy 2πγ/L, used as energy units,
is about 1 eV for tubes with typical diameter
d ∼ 1.4 nm.

III. NUMERICAL RESULTS

A typical example of energy dependence of
two-photon absorption coefficient is shown in
Fig. 2 for (e2/κL)(2πγ/L)−1 = 0.2 where
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FIG. 2: Calculated two-photon absorption co-
efficient for (e2/κL)(2πγ/L)−1 = 0.2. Phe-
nomenological broadening Γ(2πγ/L)−1 is intro-
duced. The arrows indicate the band edge and
the short vertical lines at the bottom denote ex-
citon energies.
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FIG. 3: Coulomb-interaction dependence of ex-
citon energies associated with the lowest band.
Solid and dotted lines denote excitons excited by
one- and two-photon absorption, respectively.

energy broadening is introduced by using a
Lorentzian function with a half width at half
maximum Γ. The lowest band edge is shown
by downward arrows. The energy of all the
exciton bound states is indicated by short ver-
tical lines at the bottom.

A prominent peak appears corresponding to
the second lowest exciton with odd parity and
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FIG. 4: Calculated excitation energies as a func-
tion of the circumference length. Solid and dotted
lines denote the energies for one- and two-photon
absorption, respectively, and dashed lines are the
band edges. Symbols denote experimental results
[19, 20] where open and closed symbols indicate
one- and two-photon transitions, respectively.

another peak associated with the fourth low-
est exciton appears. The difference between
the first and second lowest exciton energies is
approximately 0.22 in units of 2πγ/L.

In Fig. 3, the Coulomb-interaction depen-
dence of the exciton energies is shown. Solid
and dotted lines denote excitons contribut-
ing to one- and two-photon absorption spec-
tra, respectively. With increase of the interac-
tion, many exciton bound states split off from
the interband continuum. Similar results were
previously reported for a different cutoff en-
ergy [2].

In Fig. 4, excitation energies are plotted as
a function of the circumference length. Solid
and dotted lines denote calculated energies
of the two lowest excitons observable in one-
and two-photon absorption, respectively, and
dashed lines indicate band edges. Symbols are
experimental results [19, 20] where open and
filled symbols indicate excitons for one- and
two-photon transitions, respectively. We have
set γ0 ≈ 2.7 eV which was used for compar-
ison with experiments for the lowest excitons
associated with the first and second gaps in a
previous paper [3].

As shown in Fig. 3, the energy of the low-



est exciton is weakly dependent on the in-
teraction strength (e2/κL)(2πγ/L)−1. There-
fore, the band parameter is uniquely deter-
mined as approximately γ0 ≈ 2.7 eV. Using
the position of the second exciton, strongly de-
pendent on the Coulomb interaction, we can
place the interaction parameter in the range
0.1 < (e2/κL)(2πγ/L)−1 < 0.2. More precise
determination becomes possible when we in-
clude other effects such as a higher order k·p
term giving trigonal warping, curvature, and
lattice distortions [3], leading to a family effect
observed experimentally [12, 13].

IV. CONCLUSION

We have studied two-photon absorption
spectra associated with excited exciton states

of semiconducting carbon nanotubes for par-
allel polarization within the effective-mass ap-
proximation. Two-photon exciton peaks ap-
pear at energies of the second and fourth low-
est levels with odd parity. The theory is in
good agreement with experiments.
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