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When we consider center-of-mass kinetic energy of excitons, additional boundary conditions

(ABCs) are required to connect the electromagnetic fields inside and outside of excitonic medium.

Although some theoretical schemes do not require ABCs, we must treat large number of exciton

states in order to discuss macroscopic materials, and then much time is required for calcula-

tion. This paper provides a calculation method of exciton correlation functions in inhomogeneous

exciton-photon system from the calculation result of boundary problem with ABCs, which do not

require so much time.

1 Introduction

It is well known that the classical electromag-

netism is completely described by the Maxwell

equations together with the Lorentz force law.

However, in boundary problems for connecting

the electromagnetic fields between different me-

dia, we sometimes require additional bound-

ary conditions (ABCs) [1] in addition to the

Maxwell boundary conditions, which are de-

rived from the Maxwell equations. This ABC

problem emerges when we consider materials

which provide multiple light modes for a given

frequency. The ABC problem was first pointed

out by Pekar [2] for exciton-polariton systems

with exciton center-of-mass kinetic energy, and

the subsequent studies have elucidated that

ABCs are determined by microscopically con-

sidering boundary conditions of the exciton

center-of-mass motion at interfaces [3–6]. Af-

terward, some calculation methods without de-

riving ABCs have been established, and are

they called ABC-free theory [7] or microscopic

nonlocal theory [8]. Based on the same idea of

these theories, we have constructed a quantum

electrodynamics (QED) theory for excitons in

inhomogeneous systems [9].

However, our theory requires the complete

set of elementary excitations in excitonic ma-

terials, and, in order to derive exciton corre-

lation functions renormalizing the interaction

with the electromagnetic fields, we must nu-

merically calculate the inverse of a large ma-

trix whose size is the number of all excitation

states. One method to reduce the matrix size is

to describe the contribution from non-resonant

excitations, such as phonons and higher exci-

tons, by the background dielectric function in

the Maxwell equations as ε = εbg + χex. How-

ever, even by using this technique, we must

consider large number of exciton center-of-mass

motion states in order to discuss macroscopic

materials. The purpose of the present paper is

to construct the exciton correlation functions

in inhomogeneous exciton-photon systems from

the calculation result of boundary problem with

ABCs, which do not require the numerical cal-

culation of large matrices.

2 Matrix inversion method

We consider a material where the transla-

tional symmetry is broken in the z direction,

and s-polarized excitons are weakly confined in

a finite region. For simplicity, we consider only



one relative exciton state with eigenfrequency

ωT, and denote the center-of-mass motion by

index m. The excitons are pure bosons, and

the system is linear as

Ĥex =
∑
m

~Ωmb̂†mb̂m, (1)

where b̂m is the annihilation operator of an ex-

citon in state m, and Ωm is the eigenfrequency

including the center-of-mass kinetic energy. On

the other hand, we consider the interaction

between the excitons and the electromagnetic

fields as

Ĥint = −
∫

dz Â(z)Ĵ(z), (2)

where Â(z) is the vector potential and Ĵ(z) =∑
m J gm(z)b̂m + H.c. is the excitonic current

density. The coefficient J has the relation with

the longitudinal-transverse (LT) splitting en-

ergy as ~ωLT = |J |2/εbgε0ωT
2, and gm(z) is

the exciton center-of-mass wavefunction. The

whole Hamiltonian is written as Ĥ = Ĥex +

Ĥint + Ĥem, and Ĥem describes the electromag-

netic fields and the background dielectrics as

treated in our previous work [9].

The time-ordered exciton correlation func-

tion renormalizing the exciton-photon interac-

tion is defined as

iGm,m′(ω) ≡
∫ ∞

−∞
dt eiωt ⟨Tb̂m(t)b̂†m′(0)⟩ , (3)

where T is the time-ordering operator, and

b̂m(t) = eiĤt/~b̂me−iĤt/~ is the Heisenberg rep-

resentation of the exciton operator. As a re-

sult of our QED theory [9], under the rotat-

ing wave approximation (RWA), this correla-

tion function is calculated by matrix inversion

(Dyson equation) as

[G−1(ω)]m,m′ = (ω − Ωm)δm,m′ − Σm,m′(ω),
(4)

where the self-energy is written as

Σm,m′(ω) = εbgωLT(ωT/c)2

×
∫ ∞

−∞
dzdz′ g∗m(z)G(z, z′, ω)gm′(z′), (5)

and G(z, z′, ω) is the Green’s function satisfying[
∂2

∂z2
+ k∥

2 + εbg(z)
ω2

c2

]
G(z, z′, ω) = δ(z−z′).

Here, k∥ is the in-plane wavenumber. In de-

riving the self-energy (5), we use the fact that,

according to Ref. 10, the Green’s function cor-

responds to the retarded correlation function of

the vector potential in Ĥem system:

µ0G(z, z′, ω)

=
1
i~

∫ ∞

0

dt eiωt ⟨[Â0(z, t), Â0(z′, 0)]⟩em , (6)

where the time representation is defined as

Â0(z, t) ≡ eiĤemt/~Â(z)e−iĤemt/~. (7)

However, we must treat large matrices to dis-

cuss macroscopic materials in this calculation

scheme.

3 Exciton-photon coupled modes

Instead of the numerical matrix inversion in

the previous section, we can also derive G(ω)

by the following calculation. First, we derive

the extreme value ω̃ of the exciton correla-

tion function. The real and imaginary parts

of ω̃ respectively represent the resonance fre-

quency and radiative decay rate of exciton-

photon coupled mode in the system. The com-

plex frequency ω̃ and its corresponding complex

wavenumber k̃ satisfy the dispersion relation as

c2(k∥
2 + k̃2)
ω̃2

= εbg +
εbgωLT

Ω(k̃) − ω̃

= εbg + χex(k̃, ω̃). (8)

Further, they also satisfy the self-sustaining

condition in the system. When we suppose

a non-excitonic layer of thickness d, the self-

sustaining condition is simply written as

rL rR ei2k̃d = 1, (9)

where rL/R is the reflection coefficient at

left/right interface. This condition means that

there is neither amplitude decay nor phase shift



Fig. 1: System for calculating self-sustaining con-

dition with considering ABCs.

after a round trip inside the layer. However,

when we consider the exciton center-of-mass ki-

netic energy, there are two wavenumbers k̃1 and

k̃2 satisfying Eq. (8) for a given ω̃, and then

we must consider ABCs. Therefore, we sup-

pose the system as seen in Fig. 1 to derive the

self-sustaining condition for the mode k̃1. The

electric field of each mode is written as

EL(z) = CLe−ikLz,

E1(z) = A1eik̃1(z−d) + B1e−ik̃1z

(+F1e−ik̃1z only at z = 0),

E2(z) = A2eik̃2(z−d) + B2e−ik̃2z,

ER(z) = CReikRz,

where kL/R = (εL/Rω̃2/c2 − k∥
2)1/2 is the

wavenumber in left/right medium. A polariton

field F1 incidents on the left interface from the

excitonic layer, and A1,2, B1,2, and CL,R are

unknown. The Maxwell boundary conditions

at z = 0 and z = d are obtained as

CL = F1 + A1e−ik̃1d + B1 + A2e−ik̃2d + B2,

CR = A1 + B1e−ik̃1d + A2 + B2e−ik̃2d,

kLCL = k1F1 − k1A1e−ik̃1d

+ k1B1 − k2A2e−ik̃2d + k2B2,

kRCR = k1A1 − k1B1e−ik̃1d

+ k2A2 − k2B2e−ik̃2d.

Further, we require two ABCs to determine the

six unknowns. In the present paper, we adopt

the Pekar’s ABC [2], and they are written as

0 = χ1F1 + χ1A1e−ik̃1d + χ1B1

+ χ2A2e−ik̃2d + χ2B2,

0 = χ1A1 + χ1B1e−ik̃1d + χ2A2 + χ2B2e−ik̃2d,

where χi = c2(k∥
2 + k̃i

2)/ω̃2 − εbg is the exci-

tonic susceptibility. By solving these six bound-

ary conditions, the six unknowns are deter-

mined for given F1. Here, in order to define

the reflection coefficients r′L and r′R in this sys-

tem, we consider that B1/F1 is written as

B1/F1 = r′Lr′Reik̃1d + (r′Lr′Reik̃1d)2 + · · · . (12)

Further, due to the correspondence to Eq. (9),

we consider the self-sustaining condition for

mode k̃1 as

r′L r′R eik̃1d =
B1/F1

1 + B1/F1
= 1. (13)

Although this condition is satisfied only in the

limit of |B1/F1| → ∞, we can renew k̃1 as

k̃1 :=
−1
i2d

ln(r′L r′R) =
−1
i2d

ln
(B1/F1)e−i2k̃1d

1 + (B1/F1)
(14)

in the numerical successive calculation. Ac-

tually, by simultaneously solving Eqs. (8) and

(14), we can reproduce ω̃ obtained by the cor-

relation function method.

4 Reconstruction of correlation function

Using the extreme value set {ω̃λ}, the exciton

correlation function tensor should be written as

G(ω) =
∑

λ

v∗(ω̃λ)v(ω̃λ)
ω − ω̃λ

, (15)

where the vectors {v(ω̃λ)} are orthonormal as

v(ω̃λ) · v∗(ω̃λ′) = δλ,λ′ . (16)

On the other hand, according to Ref. 11, it is

also approximately derived from Eq. (4) as

Gm,m′(ω) ≃
∑

k

{gm(k)}∗gm′(k)
ω − Ω(k) − Σ(ω, k)

(17)



where gm(k) is the Fourier transform of exciton

center-of-mass wavefunction:

gm(k) =
1√
L

∫ ∞

−∞
dz e−ikzgm(z), (18)

and the self-energy is written as

Σ(ω, k) =
εbgωLTωT

2/c2

εbg(ω + iδ)2/c2 − k∥
2 − k2

. (19)

By comparing Eqs. (15) and (17) and our intu-

itive consideration, we find the form of v(ω̃λ)

as

vm(ω̃λ) =
2∑

i=1

χλ,i

N

[
Aλ,igm(k̃λ,i)

+ e−ik̃λ,idBλ,igm(−k̃λ,i)
]
, (20)

where Ai,λ and Bi,λ are the coefficients ob-

tained in the self-sustaining condition, and N

is the normalization factor. Actually, Eq. (20)

satisfies the orthogonal relation (16), and pro-

vides a good approximation of the exciton

correlation function at thickness smaller than

about 500 nm for CuCl film.

5 Discussion

In order to obtain a good numerical precision

in calculating the exciton correlation functions,

in the case of CuCl film with 1 µm thickness,

we must consider 500 states of exciton center-

of-mass motion. The required state number is

doubled, if we double the film thickness. In the

matrix inversion method, the calculation time

is proportional to the third power of the number

of considered exciton states. In contrast, in the

extreme value method, the calculation time is

linearly proportional to the state number. Fur-

thermore, we can also perform analytical cal-

culations by using the extreme values and the

form (15) of the exciton correlation function.

For example, we can derive the temperature

correlation function of excitons by the analytic

continuation with the retarded one.

However, Eqs. (15) and (20) cannot be ap-

plied to films thicker than 1 µm. We must

derive more accurate expression of the exciton

correlation functions for future applications of

this calculation method, as well as considering

the effects of RWA. Further, we must also elu-

cidate the correspondence with the correlation

function of ideal exciton-polaritons in the limit

of infinite crystal.
Although we adopt the Pekar’s ABC [2] in

the present paper, the other ABCs can be ap-
plied to the extreme value method. In this situ-
ation, we must microscopically derive the form
of ABCs from the center-of-mass wavefunctions
of excitons [3–6]. Further, in addition to the
excitonic layer considered in the present paper,
this method can be applied to other structures,
such as multilayers, spheres, photonic crystals
and so on, if we can obtain proper expressions of
ABCs. In this way, the extreme value method
provides the connection between the classical
field expansion method with ABCs and the mi-
croscopic nonlocal theory [8] or our QED theory
[9].
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