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Multiphoton wavefunction after the Kerr interaction
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The multiphoton wavefunction after the Kerr interaction is obtained analytically for an arbitrary
photon number. The wavefunction is composed of two fundamental functions: the input mode
function and the linear response function. The nonlinear effects appearing in this wavefunction are
evaluated quantitatively, revealing the limitations of nonlinear quantum optics theories based on
single-mode approximations.

I. INTRODUCTION

With the goal of achieving all-optical
quantum information processing, single-
photon engineering has become one of the
hottest research topics in physics. Rapid
progress has been made in generating and
detecting single photons, and also in infor-
mation processing based on linear optics.
Furthermore, the discovery of optical nonlin-
earity that is sensitive to individual photons
has raised the possibility of using one pho-
ton to control another photon, increasing the
need to develop a quantitative theory of non-
linear quantum optics.The simplest method
to analyze the nonlinear dynamics of pho-
tons is to introduce an effective nonlinear-
interaction Hamiltonian based on the single-
mode approximation. For example, the fol-
lowing time evolution operator has conven-
tionally been used for the self-Kerr interac-
tion:

Û = exp(−itχc†c†cc), (1)

where c† is a single-mode photon creation
operator, t is the interaction time, and χ
is the coupling coefficient, which is propor-
tional to the nonlinear susceptibility. This
method offers intuitive pictures of nonlinear
dynamics, and has led to many proposals in
photon engineering based on nonlinear op-
tics. However, such theories are unsuitable
for more quantitative analyses due to the
phenomenological introduction of t and χ.
Furthermore, single-mode treatment gener-
ally becomes invalid after photons mutually
interact.

Since nonlinear optical processes are sensi-
tive to the spatiotemporal distribution of the
photon field, in quantitative analyses it is es-
sential to incorporate the multimode nature
of the field. In this direction, a successful ap-
proach has been the noise-operator formal-
ism, in which photons are treated as active
mechanical degrees of freedom, while optical
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FIG. 1: The physical situation considered in this
study. Initially (τ = 0), the n input photons are
uncorrelated and have identical mode functions
f(r). After the nonlinear interaction (τ = t) the
photons become correlated. The output wave-
function is denoted by gn(r1, · · · , rn; t).

materials are treated implicitly through non-
instantaneous response functions and noise
operators [1–3]. A more rigorous approach
is the full-quantum formalism, in which both
photons and materials are treated as active
mechanical degrees of freedom [4]. Since
the exchange of quantum coherence between
photons and materials can be handled rigor-
ously, this approach is the most convincing
in revealing the true nature of nonlinear dy-
namics of photons.

In this study, the Kerr interaction of pho-
tons is analyzed using the full-quantum for-
malism, by explicitly accounting for the in-
trinsic wave-packet nature of photons (see
Fig. 1). By using a two-level system as
a model Kerr system, the output n-photon
wavefunction is derived in an analytic form
for an arbitrary photon number n, and the
nonlinear effects appearing in this wavefunc-
tion are evaluated quantitatively. As a re-
sult, a microscopic basis is provided for ef-
fective theories such as that represented by
Eq. (1), and the limitations of such theories
are simultaneously exposed. The current re-
sults demonstrate both the necessity and the
potential of multimode full-quantum analy-
sis in nonlinear quantum optics theory.



II. THEORETICAL MODEL

A. Hamiltonian

The physical situation considered in this
study is illustrated in Fig. 1. The overall
system consists of a one-dimensional photon
field and a Kerr system. A n-photon pulse is
input from the left-hand side (r < 0), inter-
acts with the Kerr system located at the cen-
ter (r ∼ 0), and is output into the right-hand
side (r > 0). The Kerr system is assumed to
be transparent and to conserve the photon
number. As the simplest system showing the
third-order optical nonlinearity, we employ a
single two-level system (referred to hereafter
as an “atom”) as a model Kerr system. In
a rotating frame with respect to the atomic
resonance, the Hamiltonian of the whole sys-
tem is given by (setting ~ = c = 1)

H =
∫

dk
[
kc†kck + i

√
Γ/2π(σ†ck − c†kσ)

]
,

(2)
where σ† is the Pauli raising operator for
the atomic excitation, and c†k is the pho-
ton creation operator in the wave number
representation, and Γ represents the natural
linewidth of the atom. The commutators for
σ and ck are given by [σ, σ†] = 1− 2σ†σ and
[ck, c†k′ ] = δ(k − k′), respectively. The real-
space photon operator c̃r is connected to ck

by

c̃r = (2π)−1/2

∫
dkeikrck. (3)

The ground state of the whole system (prod-
uct of the atomic ground state and the pho-
tonic vacuum state) is denoted by |0〉.

B. Input and output photons

The input and output photons are char-
acterized as follows. Throughout this study,
the time variable is denoted by τ , and the
initial and final times are set to τ = 0
and t, respectively. At the initial moment
(τ = 0), the input photons are in the n-
photon Fock state, |n〉 = (n!)−1/2(c†)n|0〉,
where c† is a single-mode photon creation
operator. In the multimode notation, c† is
given by c† =

∫
drf(r)c̃†r, where f(r) de-

notes the input mode function, normalized
as

∫
dr|f(r)|2 = 1 and localized in the r < 0

region. Thus, in the multimode notation the

input state vector is given by

|nin〉 = (n!)−1/2

∫
dnrf(r1) · · · f(rn)c̃†r1

· · · c̃†rn
|0〉.

(4)
Namely, the n input photons are identical
and uncorrelated. In contrast, at the final
moment (τ = t), the n photons become cor-
related as a result of the nonlinear interac-
tion. We therefore employ a general form for
the output state vector:

|nout〉 = (n!)−1/2

∫
dnrgn(r1, · · · , rn; t)c̃†r1

· · · c̃†rn
|0〉,

(5)
where gn is a symmetric function of
the space coordinates, normalized as∫

dnr|gn(r1, · · · , rn; t)|2 = 1 and localized in
the r > 0 region.

III. n-PHOTON OUTPUT
WAVEFUNCTION

The n-photon output wavefunction
gn(r1, · · · , rn; t) can be obtained by solving
the Schrödinger equation,

|nout〉 = e−iHt|nin〉. (6)

However, instead of solving this equation di-
rectly in the n-quanta Hilbert space, it is
more convenient to assume a classical input
and to solve the resulting equations pertur-
batively [5]. The n-photon output wavefunc-
tion gn(r1, · · · , rn; t) is obtained by the fol-
lowing rules: (i) gn is expressed in terms of
the input mode function f and the atomic
correlation functions s1, · · · , sn, as

gn(r1, · · · , rn; t) = f(−t1) · · · f(−tn) ×1 −
∑

i

s1(ti)
f(−ti)

+
∑
i<j

s2(ti, tj)
f(−ti)f(−tj)

−
∑

i<j<k

s3(ti, tj , tk)
f(−ti)f(−tj)f(−tk)

+ · · ·

+(−1)n sn(t1, · · · , tn)
f(−t1) · · · f(−tn)

]
, (7)

where tj ≡ t − rj and
∑

i<j runs over i and
j satisfying 1 ≤ i < j ≤ n. (ii) The n-
point atomic correlation function sn can be
expressed in terms of the one-point atomic
correlation function s as

sn(t1, · · · , tn) = s(tn)
∏n−1

j=1 [s(tj) − e(tj+1−tj)/2s(tj+1)].
(8)



(iii) The one-point atomic correlation func-
tion s is the Laplace transform of the input
mode function f , as given by

s(t) =
∫ ∞

0

dξf(−t + ξ)e−ξ/2. (9)

Thus, the output wavefunction
gn(r1, · · · , rn; t) can be expressed in
terms of two fundamental one-variable
functions [the input mode function f(r),
and the linear response function s(t) given
by Eq. (9)] for an arbitrary photon number
n. gn is a symmetric function of the space
coordinates, and is given, for r1 ≤ · · · ≤ rn,
by Eqs. (7) and (8), where tj = t − rj . For
example, g1 and g2 are given by

g1(r; t) = f(r − t) − s(t − r), (10)
g2(r1, r2; t) = g1(r1; t)g1(r2; t)

− e(r1−r2)/2s2(t − r2). (11)

IV. CHARACTERIZATION OF
NONLINEAR EFFECTS

A. Input mode function

Now that we have obtained the output
wavefunctions, we proceed to characterize
the nonlinear effects appearing in the output
photons. Hereafter, we employ the following
form for the input mode function:

f(r) =

{√
2/d er/d+ikr (r ≤ 0)

0 (r > 0)
, (12)

where d and k represent the coherence
length and the frequency (measured from the
atomic resonance) of the input photons, re-
spectively. The nonlinear effects are maxi-
mized when the input photons are in reso-
nance with the material (k ∼ 0). However,
since off-resonant photons are actually used
to avoid absorption by the material, we dis-
cuss off-resonant photons (|k| À Γ) in the
following.

B. Nonlinear phase shift

Firstly, we evaluate the nonlinear phase
shift appearing in the output wavefunction
gn. For this purpose, we define a linear n-
photon output wavefunction by

gL
n(r1, · · · , rn; t) =

n∏
j=1

g1(rj ; t). (13)
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FIG. 2: The nonlinear phase shift as a function
of the photon number. The input pulse param-
eters are d = 2Γ−1 and k = −5Γ (triangles),
−10Γ (squares) and −15Γ (circles). The dotted
lines show the predictions of the effective Hamil-
tonian of Eq. (1), θn = θ2 × n(n − 1)/2.

This linear output is expected in the absence
of the nonlinear interaction. The nonlinear
effects are evaluated through the overlap αn

between the linear and nonlinear output, as
given by

αn =
∫

dnr[gL
n(r1, · · · , rn; t)]∗gn(r1, · · · , rn; t),

(14)
which becomes independent of t sufficiently
after the interaction. The nonlinear phase
shift θn is expressed by the phase of αn,
namely, θn ≡ −Im(log αn). The effective
theory predicts that θn is proportional to
n(n − 1), since αn = e−itχn(n−1) due to
Eq. (1). In Fig. 2, the nonlinear phase shift
is plotted as a function of the photon num-
ber. As expected, the nonlinear phase shift
increases with the photon number n and de-
creases with the detuning |k|. The prediction
of the effective theory, θn = θ2 ×n(n− 1)/2,
is also plotted with dotted lines for reference.
It is observed that the effective theory agrees
well with the rigorous results, provided the
nonlinear phase shift is small (k = −15Γ in
Fig. 2). However, the effective theory be-
comes invalid for evaluating larger nonlin-
ear phase shifts. The actual phase shifts are
considerably smaller than those predicted by
the effective theory (k = −5Γ in Fig. 2). For
example, if the allowable error is set at 5%,
the effective theory of Eq. (1) can be justified
only in the small phase-shift region satisfy-
ing θ . 10−2.
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FIG. 3: The intensity profile Iout
n (r; t) of the

output photons, for the photon numbers n = 1
(solid line), 4 (dotted line) and 8 (dashed line).
The input pulse parameters are d = 2Γ−1 and
k = −10Γ. The input photon profile I in(r) =

(2/d)e2r/d is also plotted using a thin solid line
for reference.

C. Shape of output pulse

Next, we observe the shape of the output
photon pulse. In the input state of Eq. (4),
all photons have an identical single-mode
function f(r). However, such a single-mode
description cannot be used for the output
photons, since the photons become corre-
lated after the nonlinear interaction, as in-
dicated by Eq. (11). Instead, we character-
ize the profile of the output photons using a
normalized intensity distribution Iout

n (r; t),
defined by

Iout
n (r; t) =

〈nout|c̃†r c̃r|nout〉
n

. (15)

Note that Iout
n (r; t) is a real and positive

function normalized as
∫

drIout
n (r; t) = 1.

In Fig. 3, Iout
n (r; t) is plotted for the pho-

ton numbers n =1, 4 and 8. The input
photon profile [I in(r) ≡ 〈nin|c†rcr|nin〉/n =
(2/d)e2r/d, regardless of n] is also plotted for
reference. The weak oscillation observed in
the output photon profile is due to the inter-
ference between the transmission and emis-

sion components [i.e., the first and second
terms in Eq. (10)]. It is observed that the
output photons are delayed relative to the
input, due to the absorption and re-emission
by the material. The nonlinear effect ap-
pears as a slight advancing of the output
pulse. This is because the efficiency per
photon of the delay mechanism decreases
the more photons are involved. This n-
dependent deformation of the pulse profile
is completely neglected in the effective the-
ory based on the single-mode approximation.
However, since the interferability of photon
pulses is sensitive to the pulse profile, such
deformation must be taken into account in
the construction of single-photon devices.

V. SUMMARY

In summary, the Kerr interaction of n pho-
tons occurring at a two-level system has been
investigated using a multimode full-quantum
formalism. The n-photon output wavefunc-
tion has been obtained analytically for an
arbitrary photon number n, and the non-
linear effects appearing in the output have
been quantitatively evaluated. The follow-
ing two features, which are essential for the
construction of single-photon devices, have
been clarified: (i) the actual nonlinear phase
shift is smaller than the phase shift predicted
by the effective theory (Fig. 2), and (ii) the
output pulse profile varies considerably with
the photon number (Fig. 3). These results
demonstrate both the necessity and the po-
tential of multimode analysis in nonlinear
quantum optics theory.
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