J 会合体及びそのフィブリル構造の 局所領域角度依存光学特性

斉藤 慶太^A,小原 祐樹^A,柿原 隆介^A,小田 勝^{A,B},谷 俊朗^{A,B}
東京農工大学大学院 ^A物理システム工学専攻,^B共生科学技術研究院
〒 184-8588 東京都小金井市中町 2-24-16

Angle dependent optical properties of J-aggregates and their fibril-shaped structure in microscopic region

Keita Saitoh^A, Yuki Obara^A, Ryusuke Kakihara^A, Masaru Oda^{A, B}, Toshiro Tani^{A, B} Department of Applied Physics^A, and Institute of Symbiotic Science and Technology^B, Tokyo University of Agriculture and Technology,

Naka-cho 2-24-16, Koganei, Tokyo, 184-8588

Abstract

It is significant to investigate a fibril-shaped bundle structure of J-aggregates since its potential provides increased light-matter interaction due to its condensed structural features. To observe such local optical properties, we have been building up brand-new microscopic optical system. In this report, we demonstrate its performance experimentally by comparing the angle dependent properties of PIC J-aggregates in strong coupling regime microscopically and macroscopically. We will also describe briefly some preliminary results on the fibril-shaped structures by the system.

<u>1. はじめに</u>

J 会合体は自己組織化的に凝集した一次 元鎖状の分子集合系である。また、J 会合体 の電子励起状態は、π電子系の個別励起が 非局在化した巨視的分極波であり、その特性 は、一次元フレンケル励起子の描像を用いて 説明できる[1]。スペクトル特性は分子分散状 態に比べて長波長側に大きく移動した先鋭で 振動子強度の大きい吸収バンド(J バンド)を 持ち、ストークスシフトは非常に小さい。この J バンドが波長選択性に優れていることから、写 真用フィルムの増感剤などに利用されてきた。 しかし、J 会合体の会合構造は複雑であり、励 起子バンド構造と物質の構造との相関など、 未だ明確な理解を得られていない部分も多 い。

これまで我々は、擬イソシアニン (pseudo isocyanine chloride, PIC-Cl) J 会合体の励 起子バンド構造を解明するための研究を行っ て来た。PIC-J 会合体は、十数個の PIC 分子 が鎖状に連なって形成された、光学顕微鏡の 回折限界を超えるスケールの物質である。故 に、その光物性を単一で直接捉えることは難し い。一方で我々は、J 会合体が更に東状に凝 集した、フィブリル構造 J 会合体に注目した。 フィブリル1本の幅はサブミクロン程度であるた め、光学顕微鏡を用いて直接の観測が可能で ある。ポリマー中に固定した太いフィブリル上 での局所画像計測から得た反射スペクトルに は、線幅の増加が見られた。この現象は、J 会 合体が束状になったことによって生じるフィブリ ル特有のものであり、フィブリル化していない J 会合体や幅の狭いフィブリルには見られない 特異性である[2]。フィブリル構造の高さが概ね $\lambda/2$ 程度(λ はJバンドの吸収波長)なので、こ の縦方向に量子化された光のモードとJ 会合 体励起子との結合が起きるという仮説を立てる と、この特異性はポラリトン形成によるものとの 解釈が得られる。

これを検証するために、フィブリルでない PIC-J 会合体を共振器長が λ/2 程度の微小 共振器中に入れ、人為的に共振器ポラリトンを 作り出す研究を行ってきた。そこでは実際に、 J 会合体を微小共振器内で光と強く結合させ た共振器ポラリトン状態を実現することができ た。但し、この微小共振器ポラリトンの観測範 囲は直径 800 μ m 程度のマクロ領域でのもの である。よって上記のフィブリル仮説の検証に は、フィブリル1本からの共振器的応答を観測 できる測定装置が必要である。

そこで我々は、今までの局所顕微画像測定 の光学系に改良を施し、フィブリルを観測する ために直径が数百 nmのミクロ領域で、入射光 角度走査反射スペクトル測定の実現を試みた。 ここでは直径 800 µ m 程度の領域をマクロ領 域、直径数百 nmの領域をミクロ領域と呼ぶこ とにする。今回は、観測可能となったミクロ領 域において、フィブリル化していない J 会合体 の微小共振器ポラリトン特性の測定を行い、同 一試料を用いたマクロ領域測定との比較を行 い、装置の性能を評価した。更に、それを用い てフィブリル 1 本での観測も開始したので、そ の傾向も報告する。

2. 原理

共振器内で量子化された光のモード(フォト ンモード)のエネルギー E_{ph} と励起子モードの エネルギー E_{ex} が一致するとき、2 つの新たな エネルギー固有モードが形成され、エネルギ ー状態が上枝と下枝へ分裂する。この状態が 共振器ポラリトンと呼ばれる光子と励起子との 強結合状態である。このときの分裂量 Δ は真 空ラビ分裂量と呼ばれる、結合の強さを示す 指標である。この結合状態を光子と励起子の 波動関数の混ざり合いと捉えるとき、ポラリトン の上枝、下枝のエネルギー $E_{U,L}$ は式(1)で記 述できる。

$$E_{U,L} = \frac{1}{2} \left(E_{ph} + E_{ex} \right) \pm \frac{1}{2} \sqrt{\left(E_{ph} - E_{ex} \right)^2 + \Delta^2}$$
(1)

式(1)は 2×2 行列のハミルトニアンを用い たシュレディンガー方程式から得られる。

今回の測定波長の可視光領域において、 *Eex* は一定である。一方、*Eph* は式(2)のように 入射角度を走査することによって変化させ、 *Eex* と一致させることが出来る[3]。

$$E_{ph} = E_0 \left\{ 1 - \left(\frac{\sin \theta}{n_{eff}} \right)^2 \right\}^{-\frac{1}{2}}$$
 (2)

ここで、入射角は θ 、活性層の実効屈折率 は n_{eff} 、 E_0 (= $hc/(2n_{eff}L_{eff})$)は垂直入射 時のフォトンモードのエネルギーで、hはプラ ンク定数、cは光速、 L_{eff} は実効共振器長であ る。 n_{eff} と L_{eff} は活性層からAg ミラーへの光 電場の浸み込みを考慮した値である。

<u>3. 実験</u>

3.1. 試料作製

3.1.1. PIC-J 会合体微小共振器

図 1(a)に作製した PIC-J 会合体微小共振 器の模式図を示す。共振器ミラーには、真空 蒸着法により作製した2枚のAg ミラーを用い た。Ag使用には、蒸着が容易、内部光電場の 浸み込み長が短いなどの利点がある。Ag ミラ ーへの浸み込み長が短いと Leffも短くなり、実 効的な共振器体積を小さくすることができる。 よって、比較的低いQ値のAg-Ag 共振器でも 効率的に∆の増強が実現可能である[4]。な お、今回作製した共振器のQ値は約30であ る。活性層は、色素濃度 10 mM の PIC メタノ ール溶液と 24.00 mg/mL の potassium polyvinyl sulfate (PVS) 水溶液を混合させ、 その混合溶液を高温(95℃)で石英基板上にス ピンコートすることにより作製した。但し、上記 の作製条件では活性層にフィブリルではなく、 J 会合体が形成される。共振器内に単一のフ オトンモードを生じさせるために、活性層膜厚 はん12程度になるように制御した。

3.1.2. フィブリル構造 J 会合体試料の作製 図 1(b)に、作製したフィブリル試料の模式図 を示す。今回実験に用いたフィブリルは、先に 述べた同じ濃度の PIC メタノール溶液と 6.25

mg/mLの PVS 水溶液を混合させ、その混合 溶液をカバーガラス基板上にスピンコートする ことにより作製した。

3.2. 角度走査反射スペクトル測定方法 3.2.1. マクロ領域測定

マクロ領域測定光学系には、光源としてハ ロゲンランプの白色光を用いた。この白色光 を集光し、入射角度 θで試料へ入射させる。 試料表面のスポットサイズは 800μm 程度で ある。次に反射角度 θの反射光を集光し、分 光器を通して CCD によって反射スペクトルを 検出する。なお、入射光は試料へ照射する直 前で偏光子によって偏光させている。

3.2.2. ミクロ領域測定

ミクロ領域測定には、図2に示すような全反 射蛍光(TIRF)顕微鏡を改良した光学系を利 用した。対物レンズの後焦点面の共役位置で ある開口絞り位置で、光束の光軸から離れた 一部をピンホールで選択する。選択された光 は対物レンズの中心軸からずれるため、試料 へ斜めに照射される。即ち、入射角度θは光 軸と選択される光との距離に依存する。これを 利用すると入射角度走査が可能となり、マクロ 領域測定と同等な測定を実現できる。

図 2. ミクロ領域測定光学系

試料上の測定点は直径が約350 nm であり、 太いフィブリル1本の入射角度走査反射スペ クトル測定は十分に行える。光源と反射光検 出用の分光器とCCDは、マクロ領域測定と同 様なものを用いた。

ミクロ測定領域は、面積にすると 10⁻⁶ 倍程 度もマクロ測定より測定領域を限定している。 よって、スポット径 800 µ m のマクロ領域測定 と比較するためには、その範囲内でミクロ領域 の測定点を可能な限り拡散させなければならない。今回測定を行った 6 点の間隔は、200 μm 程度とした。また、各領域とも S 偏光での 特性比較を行った。各領域測定系の入射(反 射)角度分解能は共に 1°程度である。また、 検出器系のエネルギー分解能は 1 meV 程度 である。

<u>4 結果・考察</u>

4.1. 各領域反射スペクトル測定結果

比較のために、マクロ・ミクロ領域測定から 得られた反射スペクトルを図3に示す。

左側がマクロ、右側がミクロ領域測定の結 果である。角度ごとのスペクトルは縦に等間隔 で並べて表示している。図中の破線はJバン ドのエネルギー2.164 eV を表す。ミクロ領域 の結果は、測定した6点の結果中の1点だけ のものを示した。各領域測定ともJバンドを境 にして低エネルギー側と高エネルギー側に1 つずつディップが確認できる。

反射スペクトルのディップ位置を、入射角度 に対してプロットすると図 4 に示すような分散 関係となる。左側がマクロ、右側がミクロ領域 測定のものである。図中の曲線は、式(1)によ って、フィッティングしたものである。フィッティ ングパラメータはΔと、*Eph*の変数である *neff*、 *Leff*の3つの変数としている。

フィッティングによって算出された曲線は、J バンドのエネルギーを表す破線を境にして、 それらが交わっていない。これは、フォトンモ ードとJ会合体励起子モードとの強結合状態 であるポラリトンの形成を示している。このとき のフィッティングパラメータを表1に示す。但し、 ミクロ領域測定のパラメータは先に述べた6つ の測定点の結果から得られる平均値である。

領域	neff	Leff (nm)	Δ (meV)
Macro	1.47	205	121
Micro	1.47 ± 0.04	201 ± 6	132 ± 19
表 1. 各領域測定の fitting パラメータ			

各領域測定で得られた各パラメータが良い 一致を示している。このことから、これまでと同 様な角度走査反射スペクトル測定が、ミクロ領 域においても正常に動作可能であると言える。 ミクロ領域測定のパラメータの誤差が平均値 の 10%以内に収まっていることから、測定範 囲内では試料の活性層膜厚、色素濃度など がほぼ均一になっていると考えられる。

また、各測定領域の反射スペクトル線幅を 比較すると、ミクロのディップ線幅がマクロのも のよりも狭くなっている。各領域測定範囲の大 きさの違いを考えれば、ミクロ測定では試料の 不均一性による影響が小さくなるため、ディッ プの不均一線幅が小さくなっていると考えられ る。

4.2. フィブリル構造 J 会合体反射スペクトル

図5は入射角度0°(垂直入射)の時の顕微 反射画像である。この画像内で比較的高反射 率の太いフィブリル上の1点を選び、角度走 査反射スペクトル測定を行った。図5中の矢 印の先端が今回測定した点である。その結果 を図6に示す。

今回の実験によって得られた反射スペクト ルには、期待された入射角度の依存性は現 れなかった。これは、入射媒質のカバーガラス とポリマー中のフィブリルとの屈折率の差が大 きいために、スネルの法則から屈折角の変化 が小さくなることと、フィブリルの形態が円筒状 であることなどに由来する結果だと考えている。 これらの影響を取り除くために我々は、フィブ リルを Ag ミラー共振器に挟み込んで同様な 実験を行った。結果等に関しては当日議論す る予定である。

<u>5. 参考文献</u>

- H. Fidder, J. Knoester, and D. A. Wiersma, *J. Chem. Phys.* 95 (1991) 7880.
- [2] T. Tani, M. Oda, T. Hayashi, H. Ohno, K. Hirata, J. Lumin. **122-123** (2007) 244-246.
- [3] R. J. Holmes, S. R. Forrest, Orgnic Electronics. 8 (2007) 77-93.
- [4] G. Panzarini and L. C. Andreani, *Phys. Solid State.* 41 (1999) 1337-1353.