ナトリウム蒸気におけるコヒーレントポンププローブ分光

椙村祥太、藤田和希、光永正治

熊本大学自然科学研究科

Coherent pump-probe spectroscopy in sodium vapor

S. Sugimura, K. Fujita, and M. Mitsunaga

Graduate School of Science and Technology, Kumamoto University

Coherent pump-probe spectra have been theoretically and experimentally investigated for the $3S_{1/2}$ -to- $3P_{1/2}$ D1 transition of a sodium atomic vapor. Probe transmission spectra in the presence of coupling beam exhibit a dramatic change depending on experimental conditions. In the weak-excitation, low-atomic-density limit, the spectra are mainly characterized by electromagnetically induced transparency (EIT) and saturated absorption, but for the strong-excitation, high-density case, parametric amplification (PA) is dominant, featuring high probe gain and Stokes wave generation. A theory has been developed that can explain these two seemingly totally different phenomena (EIT and PA) within the same theoretical framework by manipulating a few experimentally controllable parameters, and the observed spectra have been successfully reproduced by the theoretical simulations.

1. はじめに

 A型3準位系において、原子気体中にプ ローブ光(周波数 ω_p)と強いポンプ(カプリ ング)光(周波数 ω_c)を入射するとき、さまざ まな興味深い光学現象が観測されることが 知られている[1,2]。カップリング光が弱く原 子密度が低いときには、飽和吸収によるく ぼみとピークや非常に鋭いピークである EIT(電磁誘導透過:Electromagnetically Induced Transparency)が観測される[3]。EIT は二光子共鳴条件($\omega_p - \omega_c = \pm \omega_{21}, \omega_{21}$ は基底準位の超微細分裂周波数)を満たす ときに観測される。この領域を EIT 領域と呼 ぶことにする。また、カプリング光が強く原子 密度が高いとき、二光子共鳴条件に基づき、 非常に高い probe 光の増幅が観測される。 このとき、運動量保存則を満たす方向にプ ローブ光とほぼ同じ強度のストークス光が 発生する。この領域は PA(パラメトリック増 幅:Parametric Amplification)領域と呼んで いる[4,5]。カプリング強度を横軸、原子密度 の縦軸に取ったときのこれらの領域の位置 を模式的に図1に示す。

EIT 領域と PA 領域では、全く異なるスペク トルが観測される。しかし、これらの現象は 1つの統一された理論で説明できるはずで ある。我々は、このような観点から、カプリン グ光強度 I_c 、カプリング光周波数離調 δ_c 、 原子密度 N を操作するだけで、EIT 領域と PA 領域、さらにその中間領域も説明できる 理論を記述することに成功した。

図1 パラメータと領域の関係

2. エネルギー準位

実験としては、ナトリウム原子の D1 線 (3S_{1/2}-3P_{1/2}遷移)を用いた。この系は、基 底、励起準位ともに超微細分裂を起こして いるため、図2のような A 型4準位として取 り扱うことができる。

図2 ナトリウム D1 線による Λ 型4準位系

3. Liouville 方程式とレート方程式 この系の $\rho_{13}, \rho_{14}, \rho_{23}, \rho_{24}, \rho_{12}$ に関する Liouville 方程式はそれぞれ以下のように書 ける。

$$\begin{cases} \dot{\rho}_{13} = (i\omega_{31} - \gamma)\rho_{13} - \frac{i}{2}\sum_{j}\Omega_{j31}^{*}e^{i\omega_{j}t}n_{13} - \frac{i}{2}\sum_{j}\Omega_{j32}^{*}e^{i\omega_{j}t}\rho_{12} \\ \dot{\rho}_{14} = (i\omega_{41} - \gamma)\rho_{14} - \frac{i}{2}\sum_{j}\Omega_{j41}^{*}e^{i\omega_{j}t}n_{14} - \frac{i}{2}\sum_{j}\Omega_{j42}^{*}e^{i\omega_{j}t}\rho_{12} \\ \dot{\rho}_{23} = (i\omega_{32} - \gamma)\rho_{23} - \frac{i}{2}\sum_{j}\Omega_{j32}^{*}e^{i\omega_{j}t}n_{23} - \frac{i}{2}\sum_{j}\Omega_{j31}^{*}e^{i\omega_{j}t}\rho_{21} \qquad (1) \\ \dot{\rho}_{24} = (i\omega_{42} - \gamma)\rho_{24} - \frac{i}{2}\sum_{j}\Omega_{j42}^{*}e^{i\omega_{j}t}n_{24} - \frac{i}{2}\sum_{j}\Omega_{j41}^{*}e^{i\omega_{j}t}\rho_{21} \\ \dot{\rho}_{12} = (i\omega_{21} - \gamma_{s})\rho_{12} + \frac{i}{2}\sum_{j}(\Omega_{j31}^{*}\rho_{32} + \Omega_{j41}^{*}\rho_{22})e^{i\omega_{j}t} - \frac{i}{2}\sum_{j}(\Omega_{j33}^{*}\rho_{13} + \Omega_{j42}\rho_{14})e^{-i\omega_{j}t} \end{cases}$$

ー方で、分布数差は以下のようにレート方 程式で得られる。

$$\begin{cases} \dot{n}_{1} = -P_{13}(n_{1} - n_{3}) - P_{14}(n_{1} - n_{4}) + \frac{\Gamma}{2}(n_{3} + n_{4}) - \Gamma_{t}(n_{1} - n_{0}) \\ \dot{n}_{2} = -P_{23}(n_{2} - n_{3}) - P_{24}(n_{2} - n_{4}) + \frac{\Gamma}{2}(n_{3} + n_{4}) - \Gamma_{t}(n_{2} - n_{0}) \\ \dot{n}_{3} = P_{13}(n_{1} - n_{3}) + P_{23}(n_{2} - n_{3}) - \Gamma n_{3} - \Gamma_{t}n_{3} \\ \dot{n}_{4} = P_{14}(n_{1} - n_{4}) + P_{24}(n_{2} - n_{4}) - \Gamma n_{4} - Cn_{4}$$
(2)

なお、

$$P_{13} = \gamma |\Omega_{c31}|^{2} / 2 / ((\delta_{c} - \omega_{21})^{2} + \gamma^{2}),$$

$$P_{14} = \gamma |\Omega_{c41}|^{2} / 2 / ((\delta_{c} - \omega_{21} - \omega_{43})^{2} + \gamma^{2}),$$

$$P_{23} = \gamma |\Omega_{c32}|^{2} / 2 / ((\delta_{c}^{2} + \gamma^{2}),$$

$$P_{24} = \gamma |\Omega_{c42}|^{2} / 2 / ((\delta_{c} - \omega_{43})^{2} + \gamma^{2}), \quad \delta_{c} \equiv \omega_{c} - \omega_{32}$$

$$(c = \delta_{c} = \delta_{c})$$

これらを計算していくと、プローブ光とスト ークス光に関する伝搬方程式

$$\begin{cases} \frac{\partial \varepsilon_p}{\partial z} = -\beta_p \varepsilon_p + \eta_p \varepsilon_s^* \\ \frac{\partial \varepsilon_s}{\partial z} = -\beta_s \varepsilon_s + \eta_s \varepsilon_p^* \end{cases}$$
(3)

ここで、

$$\beta_{p}(\omega_{p}) = \alpha_{p}/2 - C_{pp}|\varepsilon_{c}|^{2}$$
$$\beta_{s}(\omega_{p}) = \alpha_{s}/2 - C_{ss}|\varepsilon_{c}|^{2}$$

$$\eta_{p} = C_{ps} \varepsilon_{c}^{2} e^{2i\Psi}$$

$$\eta_{s} = C_{sp} \varepsilon_{c}^{2} e^{2i\Psi}$$

$$\sigma(\omega_{p}) = (\beta_{p} + \beta_{s}^{*})/2$$

$$\xi(\omega_{p}) = \sqrt{(\beta_{p} - \beta_{s})^{2} - 4\eta_{p} \eta_{s}^{*}}/2$$

が得られる。

式(3)に初期条件 $\varepsilon_p(z=0) = A, \varepsilon_s(z=0) = 0$ を 代入して計算すると、

$$\begin{cases} \varepsilon_p(z) = Ae^{-\sigma z} \left[\cosh(\xi z) - \frac{\beta_p - \beta_s^*}{2\xi} \sinh(\xi z) \right] \\ \varepsilon_s^*(z) = Ae^{-\sigma z} \frac{\eta_s^*}{\xi} \sinh(\xi z) \end{cases}$$
(4)

が得られる。我々はこの式(4)を、パラメー ターを代入して数値計算する。なお、プログ ラム言語は MATLAB を使用した。

4. 実験装置

今回用いた実験装置の主要な部分を図3 に示す。2台のリング色素レーザーを用い、 それぞれをプローブ光とカプリング光の光 源とした。周波数はプローブ光カプリング光 共に、ナトリウムの D1 線(波長 589.6nm)に 合わせた。セル通過後に、プローブ光、カプ リング光、ストークス光の3本の光をそれぞ れ分離させるために、プローブ光はカプリン グ光に対し4mradの角度をつけた。また、プ ローブ光に対しては、ビーム径をきれいにす るために、空間フィルターを通した。なお、カ プリング光に対しては、高い強度が必要で あるので、空間フィルターは用いていない。

図3 実験装置

5. 実験結果

以下に、3つの領域、EIT 領域(低カプリン グ強度、低原子密度)、中間領域(高カプリン グ強度、低原子密度)、PA 領域(高カプリン グ強度、高原子密度)における実験値と理 論値のグラフをそれぞれ示す。

図5 中間領域

Probe Detuning Frequency [GHz]

Ωc:75MHz

 α_{0} : 9.5 cm⁻¹

Ip : 0.55mW

Ic : 270mW Temp. : 175°C

図7 PA 領域 ストークス光 各領域でのグラフをそれぞれ比較するとわ かるように、実験、理論とも良好な一致を得 ることができた。

6. まとめ

これまで、カップリング光強度の高い領域で ナトリウム原子を用いたパラメトリック増幅 の研究を行ってきた。今回、カップリング光 強度の低い領域で、飽和吸収分光とEIT(電 磁誘導透過)との干渉がみられた。そこで、 カップリング光強度と原子密度を操作するこ とで、EIT からパラメトリック増幅への遷移に ついて、EIT 領域、PA 領域、これらの中間領 域の3つの領域に分けて詳しく調べた。EIT 領域とは、低いカプリング強度と低い原子密 度のときである。中間領域は、高カプリング 強度と低原子密度、PA 領域は、高カプリン グ強度、高原子密度である。また、新たに4 準位系における伝搬方程式を記述し、それ を用いて数値計算も行った。そして、それぞ れの3つの領域において、実験値、理論値 共に満足する一致を得ることができた。

参考文献

- [1] K. Harada, K. Mori, J. Okuma, N. Hayashi, and M. Mitsunaga, Phys. Rev. A 78, 013809 (2008).
- [2] K. Takahashi, N. Hayashi, H. Kido, S. Sugimura, N. Hombo, and M. Mitsunaga, Phys. Rev. A 83, 063824 (2011).
- [3] K. –J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991).
- [4] C. F. McCormick, V. Boyer, E. Arimondo, and P. D. Lett, Opt. Lett. 32, 178 (2007).
- [5] J. Okuma, N. Hayashi, A. Fujisawa, M. Mitsunaga, and K. Harada, Opt. Lett. 34, 698 (2009).