GaAs/AlAs 超格子におけるミニバンド換算有効質量の 電場強度依存性 II

川端 哲矢、中山 正昭 大阪市立大学大学院工学研究科 電子情報系専攻

Electric-field-strength dependence of reduced effective masses of minibands in a GaAs/AlAs Superlattice II

Department of Applied Physics, Graduate School of Engineering, Osaka City University Tetsuya Kawabata and Masaaki Nakayama

We have investigated the electric-field-strength dependence of the reduced effective masses of the minibands in $(GaAs)_{12}/(AlAs)_m$ superlattices with m=2, 3, and 4 monolayer using electroreflectance spectroscopy. Frantz-Keldysh (FK) oscillations appear in the energy regions of the optical transitions between the n=1 electron and heavy-hole minibands at the mini-Brillouin-zone center (Γ point) and the mini-Brillouin-zone edge (π point). Analyzing the FK oscillations, we evaluate the reduced effective masses from the profiles of the FK oscillations. It is found that the reduced effective masses tend to be heavier at a given electric field strength. In addition, the electric-field-strength dependence of the reduced effective masse is changed by the miniband width determined by the AlAs-layer thickness. Considering the electric-field-strength dependence of eigenstates calculated using a transfer-matrix method, we conclude that the increase of the reduced effective masses is systematically explained by the weak localization of the envelope functions.

1. <u>はじめに</u>

ミニバンドを形成している半導体超格子 に電場を印加すると、静電ポテンシャル差 のため量子井戸間の波動関数共鳴トンネル 条件が破れ、ミニバンド状態が破綻する。 この場合、電子・正孔波動関数は、隣接す る井戸にある程度の振幅を持ちながら局在 化する。このようなブロッホ電子の振る舞 いは、ワニエ・シュタルク(WS)局在状態と 呼ばれる。WS 局在条件における光学遷移 は、シュタルク階段遷移と呼ばれ、遷移エ ネルギーが電場強度に対して、線形かつ放 射状に広がるという特徴を持つ(E_m = E₀ ± *meFD*, *m*=1, 2, 3, ...: F は電場強度、D は超 格子周期、m はシュタルク階段指数)。WS 局在状態に達しない低電場領域では、ミニ バンド状態を反映して、状態密度特異点(ミ ニブリルアンゾーンの k=0 (Γ点) と k,=π/D(π点):D は超格子周期) での光学遷 移とバンド構造に対する電場効果であるフ ランツ・ケルディッシュ(FK)振動が状態密 度特異点を起点として観測されることが知 られている[1]。そしてFK 振動の解析から、 ミニバンド換算有効質量を求めることがで きる[1]。本研究の目的は、障壁層厚が異な る複数の GaAs/AlAs 超格子を試料として、 ミニバンド状態から WS 局在状態への移行 過程における FK 振動のプロファイルに着 目し、ミニバンド換算有効質量の電場依存 性を明らかにすることである。光学遷移の 測定には電場変調反射(ER)分光法を用い、 高感度に多様なバンド間遷移を検出した。

2. 試料作製と実験方法

本研究では、試料として、分子線エピタ キシー法を用いて作製した 100 周期の (GaAs)₁₂/(AlAs)₂, (GaAs)₁₂/(AlAs)₃ および (GaAs)₁₂/(AlAs)₄ 超格子を *p-i-n* 構造に埋め 込んだ3種類の試料を用いた(*i* が超格子層)。 尚、添字は、モノレイヤー(2.83Å)単位の層 厚を示している。内部電場 F は $F=(V_b-V_a)/L$ の式から見積もった。ここで、 V_b は p-n 接 合による拡散電位 (各試料でそれぞれ 1.67 V、1.63 V、1.80 V)、 V_a は逆方向バイアス 電圧、L はノンドープ層の長さである。ER 分光の測定では、プローブ光としてW ラン プを分光器(スペクトル分解能 ~5 Å)で単色 化したものを用い、試料には DC バイアス に微小な AC バイアスを重畳し、DC バイア スを中心に電場変調を行った。反射光の変 調成分は、ロックインアンプにより検出し た。実験は 77 K で行った。

3. <u>実験結果と考察</u>

図1は、3種類すべての超格子の77Kに おける電場強度 14kV/cm での ER スペクト ルである。図中の H11 (Γ)、H11 (π) は有 効質量近似クローニッヒ・ペニーモデルに より計算した第1量子状態の電子ミニバン ドと重い正孔ミニバンド間のΓ点とπ点にお ける光学遷移エネルギーを表している。各 試料において、予想されるバンド間遷移に 対応する信号が ER スペクトルで観測され ていることから、ミニバンド構造の存在が 確認できる。そして、Γ点遷移から高エネル ギー側に、そして、π点遷移から低エネルギ ー側に振動するスペクトル構造は、それぞ れの状態密度特異点を起点とする FK 振動 に相当する。また、FK 振動の解析には以下 の解析式を用いた[2]。

$$E_{j} = E_{0} \pm \hbar \theta \left[\frac{3\pi}{4} (j - \frac{1}{2}) \right]^{\frac{2}{3}}$$
(1)

$$\hbar\theta = \left[\frac{\left(eF\hbar\right)^2}{2\mu}\right]^{\frac{1}{3}} \tag{2}$$

ここで、 E_0 は特異点の遷移エネルギー、 E_j は特異点の遷移を基準に j 番目の振動のピ ークもしくはディップのエネルギーを意味 している。式(1)より、ER スペクトルにおけ る FK 振動のピークおよびディップのエネ ルギーと jの関係から、 $\hbar\theta$ を求めることが できる。式(2)より $\hbar\theta$ は、電場強度とミニ バンド換算有効質量によって決定され、電 場強度が既知ならば、ミニバンド換算有効 質量を算出することができる。また、FK 振 動の理論的なプロファイルは、Aspnes によ って次のように定式化されている[3]。 $\frac{\Delta R}{R} \propto [Ai'(\eta)Bi'(\eta) - \eta Ai(\eta)Bi(\eta)]$

$$+(\eta)^{\frac{1}{2}}H(\eta)$$
 (3)

図 2, (GaAs)₁₂/(AlAs)₃の ER スペクトル(実 線) と式(3)に基づいてフィッティングした FK 振動のプロファイル(破線)。

$$\hbar\theta = \left[\frac{(eF\hbar)^2}{2\mu}\right]^{\frac{1}{3}}$$
(4)

$$\eta = \frac{E - E_0}{\hbar\theta} \tag{5}$$

ここで、 $\Delta R/R$ は ER スペクトル、Ai、Bi は Airy 関数、Ai^{*}、Bi^{*}は Airy 関数の微分を 表している。 本研究では、他の信号によって乱された FK 振動を正確に解析するために、式(3)に基 づいて FK 振動プロファイルのフィッティ ングを行い、FK 振動の次数 *j*を決定した。

図2は、(GaAs)₁₂/(AlAs)₃超格子の14kV/cm のER スペクトル(実線)に対して、式(3) に基づいてフィッティングしたFK 振動の プロファイル(破線)を重ねたものである。 図中のL11(Γ)は、第1量子状態の電子ミニ バンドと軽い正孔ミニバンド間のΓ点にお ける光学遷移を意味する。この結果は、

(1) H11(Γ)を起点とする FK 振動は L11(Γ)
遷移による信号の影響を受けて歪んでいること、

(2) H11(Г)を起点とする FK 振動の高次の 成分を正確に抽出し、その次数を決定でき ていることを示している。

図3は、(GaAs)₁₂/(AlAs)₃超格子の14kV/cm のER スペクトルにおけるFK 振動のピーク およびディップエネルギーと次数 j の関係 を式(1)に従ってプロットし、それを式(1)に 基づいてフィッティングした結果を示して いる。図から、実験結果が式(1)によって説 明できることが明確である。よって、式(2) の $\hbar\theta$ より、F=14 kV/cm での FK 振動の場 合、 Γ 点(π 点)におけるミニバンド換算有 効質量は、 $\mu=0.10m_0$ (-0.06 m_0)と算出され る。

図 4 は、全ての超格子構造において FK 振動が観測された電場強度領域でのΓ点お よびπ点におけるミニバンド換算有効質量 の電場強度依存性を示している。矢印は、 各超格子のミニバンドエネルギー分散関係 から計算したΓ点とπ点におけるミニバンド 換算有効質量の値である。この結果の特徴 として、Γ点とπ点の両方に関して、ミニバ ンド換算有効質量は、(GaAs)₁₂/(AlAs)₂ 超格 子では 18 kV/cm、(GaAs)12/(AlAs)3 超格子で は 14kV/cm、(GaAs)12/(AlAs)4 超格子では 8kV/cm までほぼ一定であり、それ以上では 増大の傾向を示すことが挙げられる。以下 では伝達行列法[4]を用いて、電場印加条件 下での電子の包絡波動関数を計算すること で実験結果の物理的意味を考察する。

図 5 は、(GaAs)₁₂/(AlAs)₃超格子を対象と して、0 から 50 kV/cm の電場強度領域で計 算した電子包絡波動関数を示している。尚、 重い正孔包絡波動関数に関しては、極めて 低い電場で WS 局在状態となるめに、ここ

図 3. (GaAs)₁₂/(AlAs)₃のFK 振動に対する FK プロット。

図 4. すべての超格子におけるミニバン ド換算有効質量の電場強度依存性。矢印 は、各超格子のミニバンド分散関係から 計算したミニバンと換算質量を示して いる。

図5. (GaAs)₁₂/(AlAs)₃超格子の電子包絡 波動関数の電場強度依存性の計算結果。

では無視する。この計算結果から、12kV/cm を越えた電場強度で電子包絡波動関数が局 在化傾向を示すこが挙げられる。したがっ て、図4に示した(GaAs)₁₂/(AlAs)₃超格子の 電場強度増大に伴うΓ点とπ点のミニバンド 換算有効質量の増大は、12 kV/cm 以上の電 場強度での電子包絡波動関数の弱い局在過 程を反映したものであると結論付けられる。 さらに、他の試料に関しても、ミニバンド 換算有効質量が増加し始める電場強度と伝 電場強度との対応関係を確認している。

4. <u>まとめ</u>

(GaAs)₁₂/(AlAs)₂ (GaAs)₁₂/(AlAs)₃ および、 (GaAs)₁₂/(AlAs)₄ 超格子を試料として、電場 変調反射スペクトルに現れる FK 振動を解 析することにより、ミニバンド分散関係に おけるΓ点とπ点のミニバンド換算有効質量 の電場強度依存性を実験的に明らかにした。 具体的には、ある電場強度((GaAs)₁₂/(AlAs)₂ 超格子では 18kV/cm、(GaAs)₁₂/(AlAs)₃ 超格 子では 14kV/cm、(GaAs)₁₂/(AlAs)₄ 超格子で は 8kV/cm)までは、無電場条件のミニバン ド換算有効質量を維持するものの、その電 場強度を越えると、ミニハンド換算有効質 量が増加する傾向を示すという結果が得ら れた。また、電場印加条件下での超格子の 電子包絡波動関数を伝達行列法で計算し、 ミニバンド換算有効質量が増加し始める電 場強度付近で、波動関数の弱局在化が生じ ることが明らかになった。したがって、ミ ニバンド換算有効質量の増加は、電子包絡 波動関数の弱局在化過程を反映したもので あると結論できる。

参考文献

- [1] M. Nakayama, T. Nakanishi, K. Okajima,
- M. Ando and H. Nishimura, Solid State Commun. **102**, 803 (1997)
- [2] D. E. Aspnes and A.A. Studna, Phys. Rev. B **7**, 4605 (1973).
- [3] D. E. Aspnes, Phys. Rev. 147, 554 (1966).
- [4] I. Tanaka, M. Nakayama, H. Nishimura,
- K. Kawashima, K. Fujiwara, Phys. Rev. B **46**, 7656 (1992).