スピンクロスオーバーCo酸化物 BiCoO3 における

強誘電性の光制御

山谷奈央^A, 深谷亮^{A,B}, 成瀬卓^A, 沖本洋一^A, 石川忠彦^A, 恩田健^C, 腰原伸也^{A,B}, 岡研吾^D, 東正樹^D 東工大院理工^A, JST-CREST^B, JST-さきがけ^C, 東工大応セラ研^D The Optical Control of Ferroelectricity in Spin Crossover

Co Oxide BiCoO₃

N. Yamaya^A, R. Fukaya^A, S. Naruse^A, Y. Okimoto^A, T. Ishikawa^A,

K. Onda^C, S. Koshihara^{A,B}, K. Oka^D, and M. Azuma^D

Tokyo Tech^A

JST-CREST^B

JST-PRESTO^C

Tokyo Tech Materials and Structures Laboratory^D

BiCoO₃ is a ferroelectric perovskite cobalt oxide and shows spin crossover and the resultant structural transformation by applying external pressure. We performed ultrafast pump-probe spectroscopy in BiCoO₃ and investigated the ferroelectricity in the photoexcited state. After photo-irradiation at room temperature, relative change of the second harmonic (SH) intensity ($\Delta I_{SH}/I_{SH}$) shows a sudden reduction, implying that the ferroelectricity is suppressed by the light irradiation. Whereas the excitation power dependence of $\Delta I_{SH}/I_{SH}$ shows nonlinear behavior, the reflectance change changes linearly with the pump intensity. This indicates the lattice deformation mechanism is different from the changes in the electronic state.

1. はじめに

ペロブスカイト型Co酸化物中に存在する Co³⁺のスピン状態は、配位子場によって生 じるt_{2g}軌道とe_g軌道のエネルギー差とフン トの法則に従うことによる利得により決定 される。スピン状態は圧力や温度、光照射 によって変化させることが可能であり、こ れをスピンクロスオーバー現象と呼ぶ。本 研究では、圧力印加でスピンクロスオーバ 一転移を示す BiCoO₃に着目した。図1に BiCoO₃の結晶構造と室温における反射ス ペクトルを示す。低エネルギー側(~0.1eV)

図 1: BiCoO₃の反射スペクトルと結晶構造

に見られるシャープな構造は、光学フォノ ンによるものである。このフォノン吸収に よる構造以外は、全エネルギーで反射率は 平坦であり、系が絶縁体であることを示し ている。

BiCoO₃は、空間群 P4mm(反転対称性なし) に属する強誘電体であり、強誘電体材料と して有名な PbTiO₃ と同じ構造をしている。 スピン構造は C型の反強磁性秩序を示し、 ネール温度 T_N=470K で常磁性へと転移す る^[1]。常圧下では Co の形式価数は+3 価で あり、d 軌道に 6 つの電子が高スピン(HS) 状態で存在している^[2]。高圧下で高温にし ていくとスピンクロスオーバー転移により Coが低スピン(LS)状態となり、結晶構造が 空間群 Pnma(反転対称性あり)の常誘電体へ と相転移する^[3]。また相転移にともない絶 縁体から半導体的な電子状態に変化する。 この相転移によって、高温にしたにも関わ らず、体積が減少するために、BiNiO₃^[4]や ZrW₂O₈^[5]と同じように負の熱膨張材料とし ても注目を集めている物質である。

このように、この系は圧力下において強 誘電性の制御が可能であるが、常圧下では 相転移を示さない。そこで、我々は常圧下 の室温にて光によって相転移を誘起し、 BiCoO₃の強誘電性が制御できないかを調 べることを目的として、光励起後の反射率 変化および試料から発生する第二次高調波 (SH)の強度変化を測定した。

SHは二次の非線形光学効果により生じる。 反転対称性がある物質では、二次の電気感 受率が0となるためSHは観測されない。 だが、強誘電体のような反転対称性が破れ た物質では、二次の電気感受率の値が0で はなくなるので、SHが発生する。このよう にSH発生は、系の反転対称性に非常に敏 感である。したがって、SH 強度変化をから、 系の反転対称性の変化を議論することが可 能である。

2. 試料と実験方法

試料は表面研磨した BiCoO₃ 圧粉体を使用した。

光源は再生増幅された Ti-Sapphire レーザ ー(波長 1.58 eV、パルス幅 120 fs、繰り返し 周波数 1 kHz)を用い、pump-probe 分光法に より時間分解測定を行った。

pump 光は光パラメトリック増幅器(OPA) により波長変換された 480nm(2.58eV)の光 を用いた。反射率変化の時間発展の測定で は、probe 光に OPA で変換された光の差周 波発生(DFG)を利用し、中赤外から可視域の 光(波長 0.12 eV~2.1 eV)を用いた。SH 強度 変化の時間発展の測定では、probe 光に 1.58eV の光を使用し、試料から発生した 3.16eV の SH 光を光学フィルターとモノク ロメーターで分光し、光電子倍増管で検出 した。どちらの実験でも pump 光強度は約 8mJ/cm²であり、測定は室温で行った。

3. 実験結果、考察

<反射率変化の時間発展>

図2にprobe 光の波長が 0.80eV における 相対反射率変化(ΔR/R)の時間プロファイ ルを示す。図の横軸は pump 光が当たって からの遅延時間であり、試料を pump 光で 励起した後の相対反射率変化の時間変化を 追跡している。

相対反射率の変化は瞬間的に 15%の増加 を示し、およそ 0.2ps で緩和する。その後、 反射率変化は 200ps 以上維持される。

相対反射率変化のピークとなる光励起直 後 Ops において各波長での値を使って作成 した過渡相対反射率変化スペクトルを図 3 に示す。光照射前は図1に示すように絶縁 体を反映して赤外域では平坦な反射率応答 であるのに対し、光照射後のスペクトルは、 0.5~1eVにピーク構造が出現する。このこ とは、ギャップ内に新たなバンドが生成し たことを示しており、絶縁体から半導体的 な電子状態へ変化したことを示唆している。

図 2:0.80eV における相対反射率変化の時 間プロファイル

図3:過渡相対反射率変化スペクトル

<過渡 SH 強度変化の時間発展>

図 4 に光励起後の相対 SH 光強度変化(Δ I_{SH}/I_{SH})の時間プロファイルを示す。相対 SH 光強度変化は瞬間的に 50%以上減少するが、 その後 1ps 以内に 40%程度まで回復する。 図 4 のインセットで示すように、この SH シグナルの減少は 800ps 以上維持され、2ms 後までには回復する。

この結果は光誘起により系の強誘電性が 大きく減少したことを示しており、反転対 称性が変化したことを示唆している。およ びその励起状態の寿命が極めて長いことを 示している。これはBiCoO3が圧力により反 転対称性のある強誘電体構造から反転対称 性のない常誘電体構造への相転移の傾向に 類似している。したがって、強誘電相から 常誘電相への光誘起相転移が生じている可 能性が考えられる。

図 4: 相対 SH 光強度変化の時間プロファ イル

<励起強度依存性>

図 5 に励起強度を変えた場合の相対反射 率変化・相対 SH 強度変化の時間プロファ イル、図 6 に光照射直後(0ps)における相対 反射率変化(probe: 0.5eV)および相対 SH 強 度変化の励起強度依存性を示す。

光励起後の相対反射率変化は励起密度に 線型に増加している。それに対して、相対 SH強度変化は非線形に減少しており、反射 率変化とは挙動が異なっていることが見て 取れる。これは、光励起にともなう電子状 態変化(誘電率変化)と反転対称性の変化(格 子変化)のメカニズムが異なることを示唆 するものと考えられる。

図 5:励起密度を変えた場合の相対反射率 変化・相対 SH 強度変化の時間プロ ファイル

図 6: 励起密度と相対反射率変化・相対 SH 強度変化の関係

4. まとめ、今後の課題

本研究では圧力誘起スピンクロスオーバーおよび構造相転移を起こすペロブスカイト型 Co酸化物 BiCoO3の強誘電性制御を目的に、光励起状態の観測を行った。

室温にて、pump-probe 時間分解反射率変 化および SH 強度変化測定を行った。過渡 反射率変化から、瞬間的な反射率の増大を 観測した。また、過渡反射スペクトルから、 近赤外領域で反射率の増大を観測した。こ れはギャップ内に新たなバンドが出現した ことを示唆している。

過渡 SH 強度変化から、反射率変化と同様 の時間スケールで SH 強度が大きく減少し た。これは反転対称性の良い構造へ格子が 変化したことで系の強誘電性が減少したこ とを示唆している。これらの結果から、光 照射により光誘起相転移を利用した強誘電 性の光制御に成功した。

また、反射率変化・SH 光強度変化の励起 強度依存性より、光励起に伴う電子状態変 化と格子変化のメカニズムは異なることが 分かった。

参考文献

[1] A. A. Belik, *et al.*, Chem. Mater. 18, 798-803 (2006).

[2] K. Oka, *et. al.*, Inorg. Chem. **47**, 7355. (2008).

[3] K. Oka, *et. al.*, J. Am. Chem. Soc. **132**, 9438-9443 (2010).

[4] M. Azuma, *et. al.*, Nature Communications, 2, 347 (2011).

[5] J. S. O. Evans, *et. al.*, J. Chem. Soc., Dalton Trans. 3317–3326 (1999).