Dielectric- loaded surface plasmon polariton による

配向多結晶 Zn0 薄膜の SHG 増強

神戸大院工 北尾明大、今北 健二、Kang Byung Jun、藤原裕大、藤井 稔 Second harmonic generation

from preferentially c-axis oriented ZnO thin films enhanced by dielectric-loaded surface plasmon polariton

Kobe Univ. °Akihiro Kitao, Kenji Imakita, Kang Byung Jun, Yudai Fujiwara, Minoru Fujii E-mail: imakita@eedept.kobe-u.ac.jp

Dielectric-loaded surface plasmon polariton (DLSPP) waveguides have proved to be an efficient mean to localize and guide photonic signals in a form of SPP waves. Although a number of passive components have been reported, there have been only a few studies on the active components such as optical switching devices, optical moderators and wavelength converters. We demonstrate the enhanced second harmonic generation from a Ag/ZnO DLSPP thin film and the enhancement factor of 3.3. This enhancement is due to the enhancement of the incident electric field coupled with SPP and TM waveguide modes.

1. はじめに

近年、表面プラズモンによるサブ波長領域へ の光の閉じ込め効果、電場増強効果を利用した ナノ光集積デバイスの開発が盛んに行われて いる[1]。特に、プラズモニック導波路は光の回 折限界の制約を受けず、波長以下の領域への光 の集約が可能なことから、ナノメートルサイズ の光導波路の実現が期待されている[2]。 Dielectric-loaded surface plasmon polariton (DLSPP)導波路は、プラズモニック導波路の一 種であり、金属薄膜とその上に形成された誘電 体リッジ型導波路から構成される[3]。DLSPP 導波路では金属/誘電体界面での光の増強効果、 誘電体の屈折率が空気よりも高いことによる 強い光の閉じ込め効果が期待できる。また、誘 電体層の媒質を選択することで、熱光学効果、 電気光学効果、非線形光学効果等の能動素子の 実現も可能である[4]。しかし、これらの効果を 利用したスイッチング素子、変調器、波長変換 素子等の能動素子に関する報告は少ない。特に、 波長変換素子については報告がない。

そこで、本研究では DLSPP を用いた波長変換 素子の応用に向け、金属・誘電体多層膜構造に おける第二次高調波(SHG)について議論する。 金属には Ag を、誘電体には、ZnO を用いた。 ZnO 薄膜は、ゾルゲル法で作製することにより、 c 軸に優先配向し、高い二次非線形光学定数を 有することが知られている[5]。作製した試料 に関して、表面プラズモンの分散関係、電場分 布計算を行い DLSPP による SHG 増強のメカ ニズムを議論する。

2. 実験方法

基板には溶融石英を用い、蒸着よって銀薄膜 を基板上に堆積する。酢酸亜鉛二水和物を 0.005M になるように 10ml のエタノールに溶 解する。この溶媒を銀薄膜上にスピンコーティ ングし、大気雰囲気下、350度で加熱すること により Seed 層を作製した。さらに配向性を向 上させるために、水熱合成法によって ZnO 層 を成長させた。溶媒には硝酸亜鉛、ヘキサメチ レンテトラアミンを 0.025M、クエン酸を 0.25mM の濃度になるように 50ml の蒸留水に 溶解させたものを用いた。また、成長温度を 95℃、成長時間を 60 分とした。

DLSPP の励起には Kretchman 配置を用いた。 SHG 測定系を図1に示す。光源には Mode-lock Ti sapphire laser – Tsunami を、検出器には光電子 倍増管 (PMT)を使用した。入射波の波長は 800nm とし、入射光強度を100mW、パルス幅 約100fsec、繰り返し周波数を80MHz に調節し た。また、入射光の偏光は p 偏光に制御した。 試料およびファイバーを自動回転ステージ上 に配置し、入射角・検出角を制御可能にした。 また、試料前方に λ/2 板を設置し、入射光の偏 光成分を制御可能にした。プリズムには BK7 を用いた。また、Attenuated total reflection (ATR) 測定には検出器としてフォトダイオードを用 いた。

図 1. SHG 測定系図

3. 実験結果と考察

図2にChance-Prock-Silbey(CPS)理論[6]を用 いて導出したプラズモン分散関係を示す。CPS 理論とは薄膜内部に電気双極子を仮定し、放射 された電場と薄膜の反射場との干渉効果を考 慮に入れた上で双極子のエネルギー減衰を計 算するものである。銀および ZnO 膜厚はそれ ぞれ 50nm、643nm とし、双極子の位置は ZnO 層の中心とした。複数の分散曲線が観測されて いる。

図 2. 表面プラズモンの分散関係

一般的に、金属-誘電体-空気からなる3層構造 では、下式にしたがって、導波モードが出現す る[7]。 (TM モード) $\tan \kappa t = \varepsilon_1 \kappa (\varepsilon_m \gamma + \varepsilon_2 \delta) / (\varepsilon_2 \varepsilon_m \kappa^2 - \varepsilon_1^2 \gamma \delta)$ (TE モード) $\tan \kappa t = \kappa (\gamma + \delta) / (\kappa^2 - \gamma \delta)$ $\gamma = (\beta^2 - \varepsilon_2 k_0^2)^{-1/2}, \ \delta = (\beta^2 - \varepsilon_m k_0^2)^{-1/2}$ $\kappa = (\varepsilon_1 k_0^2 - \beta^2)^{-1/2}, \ k_0 = \omega_c / c$

本研究の励起波長である 800nm では、真空中 の Light line と Prism(BK7)中の Light line の間 に 2 つのモードが存在することがわかる。これ らのピークは低波数側からそれぞれ、3 次の TE モードと 3 次の TM モードである。一方、SHG 波長の 400nm においても、複数のモードが確 認されているが、そのピーク強度は小さい。

図 3 に ATR シグナルを示す。入射角 66.1° にピークが観測された。上述の CPS 理論に基 づく計算での 3 次の TM モードの共鳴角は 66.0°である。ピーク位置が一致することから、 このピークの起源は 3 次の TM モードである と考えられる。一方、分散関係で観測された 3 次の TE モードは観測されなかった。このモー ドは s 偏向入射の場合に励起されるモードで あるため、観測されていない。また、実験で得 られたピークの半値幅は、計算によって得られ た値よりも大きい。実験結果では、ピークの半 値幅は 2.44°であるが、計算では 0.57°であ る。また、反射率は全範囲で 0.75 程度と低く なっている。これらの実験値と計算値との誤差 は ZnO 層の不均一性、及びそれに起因する光 の散乱によるものであると考えられる。

図 3. ATR シグナル

ZnO 薄膜は C 軸配向性があるため、 $\chi^{(2)}_{zzz}$ が主 な二次非線形光学定数であると仮定すると、二 次非線形光学分極は $P_{2\omega} = \varepsilon_o \chi^{(2)}_{zzz} E_z E_z$ と近似で きる。よって、SHG 増強には E_z 成分の増強が 必要である。

図4に3次のTMモードにおける、膜内電場 強度を示す。ZnO層において、界面に平行な電 場成分E_x、および垂直な成分E_zが周期構造を とっており、位相が反転していることから、こ のピークは導波モードであることが示唆され る。また、節の数が2つであることから3次の 導波モードであることが示唆される。また膜内 の広い範囲において、入射電場強度(E=1)より もEzのほうが大きい値であることがわかる。

ZnO 層の|Ez|²を積分したものを S、ZnO 層内 部で電場強度が 1 と仮定して積分したものを S₀とする。この場合の二次非線形光学分極の比 は S/S₀=23.6 となり、SHG 強度の増強度は ZnO 層内部で約 550 倍が期待される。

図 4.3 次の TM モードにおける電場分布

図 5(a)に作製した試料の SHG シグナルを示 す。横軸・縦軸はそれぞれサンプル角、SHG の 検出角を示す。SHG 強度は角度が増加するに 従って増加し、約 66°付近で最大値を取り、そ の後減少した。図 5(b)に ATR シグナルと SHG シグナルを示す。ATR シグナルのピーク位置 で SHG 強度が最大値を取った。このことから、 SHG が表面プラズモンによって増強したこと が示唆される。ATR のピークが観測されてい ない入射角 69°の SHG 強度で規格化すると、 増強度は 3.3 倍であった。見積もった ZnO 層 内部の SHG の増強度と比べ、非常に小さい原 因としては、ZnO 層の散乱と SHG の取り出し 効率が小さいことが考えられる。

図 5. (a) SHG シグナルの入射・検出角依存性 (b) ATR シグナルと SHG 強度

4. まとめ

銀/ZnO の DLSPP 構造において、表面プラズ モン共鳴による ATR シグナルを観測した。こ のモードは導波モードによるものであること を示した。ZnO 層内の電場増強度は約 3.3 倍の SHG 増強を観測した。この増強効果は、入射電 場の増強効果が支配的であることを示した。ま た、この増強は SPP と導波モードとのカップ リングであることを示した。

参考文献

- [1] D.K. Gramotnev and S.I. Bozhevolnyi, *Nat. Photonics* **4**, 83 (2010).
- [2] H. Choo, M.-K. Kim, M. Staffaroni, T.J. Seok, J.Bokor, S. Cabrini, P.J. Schuck, M.C. Wu, and E.Yablonovitch, *Nat. Photonics* 6, 838 (2012).
- [3] Z. Han, I.P. Radko, N. Mazurski, B. Desiatov, J.
 Beermann, O. Albrektsen, U. Levy, and S.I.
 Bozhevolnyi, *Nano Lett.* 15, 476 (2015).
- [4] a. V. Krasavin and a. V. Zayats, *Appl. Phys. Lett.* 97, 041107 (2010).

- [5] H.Q. Le, G.K.L. Goh, and L.-L. Liew, *CrystEngComm* **16**, 69 (2014).
- [6] R.R. Chance, J. Chem. Phys. 62, 2245 (1975).
- [7] W. Zhou, J.Y. Suh, Y. Hua, and T.W. Odom, J.*Phys. Chem. C* 117, 2541 (2013).