反応性スパッタリング法により作成した Zr-O-N 薄膜の構造分析

川島奨平、児玉翔、岩田寛、田中正俊、関谷隆夫 横浜国立大学大学院 工学研究院

Structural of Zr-O-N thin films deposited by reactive magnetron sputtering

S. Kawashima, K. Kodama, H. Iwata, M. Tanaka, T. Sekiya

Faculty of Engineering, Yokohama National University

Zr-O-N films were prepared on quartz glass and glassy carbon substrates by reactive sputtering with Zr target. The film deposition was performed in Ar and N₂ gas flow with variable O_2 flow rates on heated substrates. XRD measurement showed that the Zr-O-N films are composed of crystalline ZrN, Zr₂ON₂, Zr₇O₈N₄ and ZrO₂ phases. The fraction of the crystalline phase depends on O₂ flow rate. The film deposited under O₂ flow rate below 0.3 sccm or above 0.7 sccm was composed mainly of ZrN or ZrO₂, respectively. XPS measurement suggested that the surface of Zr-O-N film is more oxidized than inside. The binding energy of Zr3d assigned to zirconium oxynitride increases with increase in O₂ flow rate, while that of O1s and N1s decreases. This indicates reduction of anion defect and increase of oxygen fraction in the oxynitride phase.

1. はじめに

環境問題への意識が高まっている現代社 会において、排出ガスのない燃料電池自動車 の普及は持続可能な社会の構築に必要不可 欠である。しかし、燃料電池の自動車への適 用においては 80℃以下での動作が条件とな り、白金系の触媒を使用する『PEFC (固体 高分子型燃料電池)』が使用されている。白 金系触媒はその希少性から高価であり、燃料 電池自動車の普及に対し大きな妨げとなっ ているため、触媒のコスト低減を図ることは 重要である。近年、白金代替材料による触媒 の開発が盛んに行われており、遷移金属の酸 窒化物もその1つである[1-4]。

我々は燃料電池触媒としての応用を最終 的な目標とし、本研究では酸窒化ジルコニウ ム薄膜(Zr-O-N)をスパッタリング法によっ て作成した薄膜の構造を評価した。

2. 実験

Zr-O-N 薄膜試料は反応性マグネトロンス パッタリング法を用いて作成した。スパッタ リングガスとして Ar: 50sccm を導入し、ス パッタリング時に N₂: 40sccm 及び O₂: 0~0.7sccm (0.1 間隔)を加えて導入すること で **Zr-O-N** 薄膜を石英ガラスおよびグラッシ ーカーボン(GC)基板上に作成した。全ての試 料において、**Zr** ターゲット表面をクリーニ ングするためのプレスパッタを 60 分、バッ クグラウンド圧力 1×10⁻³Pa 以下、スパッタ 時圧力 0.7Pa、スパッタ電力 600W、基板加 熱温度 900℃、スパッタ時間 60 分の一定条 件で成膜した。

得られた試料の結晶構造および表面状態は、X線回折法(XRD)およびX線光電子 分光法(XPS)を用いて評価した。

3. 結果

Fig.1に作成した Zr-O-N 試料の XRD パタ ーンを示す。Fig.1 より、酸素流量が 0.3sccm の条件下で作成した薄膜は主に ZrN で構成 されており、0.4sccm で若干の Zr₂ON₂が同 時に混在していることが分かる。酸素流量を 0.4、0.5sccm と増加させると Zr₇O₈N₄のピ ーク強度が増し、ZrN のピークは減少する。 一方、m- ZrO_2 のピークは酸素流量が 0.5sccm の薄膜から観測されており、0.6、 0.7sccm と増加させると強度を増し、 Zr₇O₈N₄のピークは減少する。このように酸 素流量 0.4~0.6sccm の条件で作成した試料 は全て、ZrN、Zr₂ON₂、Zr₇O₈N₄、m-ZrO₂ が混在しており、酸素流量が多くなるにつれ て薄膜中の酸素の割合が増加している様子 が確認できる。また、酸素流量が 0.7sccm で 作成した薄膜は主にm-ZrO2で構成されてお り、Zr7O8N4が同時に混在していることが分

Fig.1 Zr-O-N 試料の XRD パターン

かる。以上の結果より、酸素流量の増加に伴い主要結晶相が ZrN、 $Zr_7O_8N_4$ 、m- ZrO_2 と系統的に変化する結果となった。ただし、 $Zr_7O_8N_4$ と Zr_2ON_2 は同位置の回折ピークが多く、明確な判別が難しい。

次に、Fig.2(a)に作成した Zr-O-N 薄膜の Zr3d(3d_{5/2}、3d_{3/2})の最大強度で規格化した XPS スペクトルを示す。全ての XPS スペク トルは C1s のピーク (248.8eV) により帯電 補正を行い、Shirley 法によりバックグラウ ンド除去を行った。

Fig.2(a)は Zr3d スペクトルに対し、最大 3 成分でピーク分離を行い、ピーク位置の特 定およびピーク強度比の解析を行った結果 である。解析における分離関数は全てガウス 関数、3d_{5/2}と 3d_{3/2}光電子ピークのエネルギ 一差は 2.43eV、強度比(面積比)は 3:2、半 値幅は同値に固定した。Fig.2(b)はピーク分 離を行った成分毎の酸素流量による Zr3d_{5/2} 電子の結合エネルギーの変化を示し、 Fig.2(c)にピーク強度比の変化を示す。

Fig.2(b)で最も高エネルギー側の成分は、 Zr3d_{5/2} 電子の結合エネルギーが 181.7~182.0eVの間で一定である。この成分 はピーク分離の結果から酸素流量の最も多 い0.7sccmの条件のスペクトルで1つの関 数で表すことが出来た。XRDの結果から、 0.7sccmで作成した膜の主成分は ZrO₂であったため、この結合エネルギー帯 (181.7~182.0eV)に属する Zr3d_{5/2}電子は ZrO₂ 由来と考えられる。この値は他の研究 での結果[5-7]と一致している。この ZrO₂成 分のピークは酸素流量が 0~0.6sccm の酸素 が少ない場合にも確認でき、Fig.2(c)に示す

Fig.2 (a)Zr-O-N 試料の Zr3dの XPS スペクトル、(b) 結合エネルギーの変化、(c)ピーク強度比の変化

通り、強度は酸素流量の増加と共に増加している。

Fig.2(b)で最も低エネルギー側の成分は、 179.3~179.5eVの間で一定である。この成分 は酸素流量が少ない条件で作成した薄膜 (0~0.3sccm)のスペクトルのみで観測する ことができ、酸素流量が 0sccm の場合で最 大となっている。XRD の結果より、酸素流 量の低下によって ZrN が主要相に変化する 様子が確認できたため、この結合エネルギー 帯(179.3~179.5eV)に属する Zr3d_{5/2} 電子 はZrN 由来と考えられる。この ZrN 成分の ピークは酸素流量が 0~0.3sccm の少ない場 合のみ確認でき、強度は酸素流量の増加と共 に減少している。

分離した3つの成分のうち中間のエネル ギーを持つ成分は、Zr3d_{5/2} 電子の結合エネ ルギーが酸素流量の増加に伴い 179.8eV か ら 180.5eV へ高エネルギー側にシフトする

Fig.3 (a)Zr-O-N 試料の O1s の XPS スペクトル、(b) 結合エネルギーの変化、(c)ピーク強度比の変化

様子が Fig.2(b)で確認できる。Fig.2(c)より、 この成分は酸素流量が 0.3~0.4sccm 付近で ピーク強度が最も高くなり、以降は酸素流量 の増加に伴い低下し、0.6sccm 以上で極端に 低くなっていることから、XRD の結果と合 わせ、この結合エネルギー帯 (179.8~180.5eV) に属する Zr3d_{5/2}電子は Zr₇O₈N₄ 由来と考えられる。この Zr₇O8N₄ 成分のピークは酸素流量が 0~0.6sccm の間 に確認することができ、0~0.4sccm までは酸 素流量の増加に伴い強度が緩やかに増加す るが、その後は急激に減少する。

Fig.3に**O**1sスペクトルを最大3つのガウ ス関数でピーク分離を行った結果をまとめ た。

Fig.3(b)で最も低エネルギー側の成分は、 O1s 電子の結合エネルギーが 529.6~530.0eVの間で一定である。最も酸素 流量の多い 0.7sccm で作成した膜の主成分

Fig.4 (a)Zr-O-N 試料の N1s の XPS スペクトル、(b) 結合エネルギーの変化、(c)ピーク強度比の変化

は ZrO₂であったため、0.7sccm のスペクト ルにおいて最大のピークが存在する結合エ ネルギー帯(529.6~530.0eV)に属する O1s 電子は ZrO₂由来と考えられる。この値は他 の研究での結果[5-7]と一致している。

Fig.3(b)で酸素流量の増加に伴い 531.3eV から 530.3eV へ低エネルギー側にシフトす る O1s 電子成分は、酸素流量が 0.3~ 0.4sccm 付近でピーク強度が最も高くなり、 以降は酸素流量の増加に伴い低下し、 0.6sccm以上で極端に低くなっている。Zr3d スペクトルの結果と合わせると、この結合エ ネルギー帯 (531.3eV~530.3eV) に属する O1s 電子は Zr7OsN4 由来と考えられる。

また、0.7sccm の条件のスペクトルで 531.8eV付近に確認できるピークは、吸着酸 素に由来する O1s 電子であると考えた。こ の値は他の研究での結果[6,7]と一致してお り、0.6sccm以下の酸素流量のスペクトルに おいても観測された。

Fig.4にN1sスペクトルを最大3つのガウ ス関数でピーク分離を行った結果をまとめ た。

Fig.4(b)で 396.9~397.0eV で結合エネル ギーが一定の成分は酸素流量が少ない条件 で作成した薄膜(0、0.1sccm)のスペクト ルのみで確認することができ、酸素流量が Osccmの場合で最大となっている。XRDの 結果より、酸素流量の低下によって ZrN が 主要相に変化する様子が確認できたため、こ の結合エネルギー帯(396.9~397.0eV)に属 する N1s 電子は ZrN 由来と考えられる。 Fig.3(c)より、この ZrN 成分のピークは酸素 流量が 0~0.3sccm の少ない場合のみ確認で き、強度は酸素流量の増加と共に減少してい ることが分かる。

Fig.4(b)で結合エネルギーが 395.9eV から 395.2eV へ低エネルギー側にシフト成分は 酸素流量が 0.6sccm 以上で確認できなくな っている。Zr3d スペクトルの結果と合わせ る と 、 こ の 結 合 エ ネ ル ギ ー 帯 (395.9~395.2eV) に属する N1s 電子は Zr₇O₈N₄由来と考えられる。

また、吸着窒素に由来する N のピークは 400eV 付近に観測されるが[6,7]、全ての試 料でほとんど強度を持たなかった。

Zr3d、O1s スペクトルの解析の結果から、 酸素流量が 0~0.3sccm の少ない場合であっ ても ZrO2成分が多量に占めていることが分 かる。これは XRD 測定での結果に反してお り、Zr-O-N 試料の表面構造は空気酸化の影 響を受けていることがわかる。また、全ての 試料で吸着窒素のピークが確認できなかっ たが、これは Zr-O-N 物質の表面に酸素が選 択的に吸着されてしまうためだと考えられ る。

ZrN および **ZrO**₂に由来する **Zr3d** 電子と N1s 電子および **Zr3d** 電子と O1s 電子の結合 エネルギーは酸素流量に依存せず、一定の値 を取るのに対し、**Zr**₇O₈N₄由来する **Zr3d** 電 子は酸素流量の増加と共に結合エネルギー が高エネルギー側にシフトし、N1s と O1s は低エネルギー側にシフトしている。これは 酸窒化ジルコニウム結晶の性質に起因する ものだと考える。**Zr**₂ON₂、**Zr**₇O₈N₄の結晶 構造は CaF₂型(蛍石型)の結晶構造から陰 イオンが欠損した歪んだ構造を持つ。 **Zr**₂ON₂では **Zr** 一個当たり 1/4 の陰イオンが 欠損し、**Zr**₇O₈N₄ では 2/7 が欠損している。 酸素流量を増加させることで陰イオンの欠陥が徐々に埋まり、Zr2ON2らZr7O8N4の状態に近づくことで、周囲の陰イオンから受ける静電的な束縛力が大きくなり、結合エネルギーが上昇すると考えられる。

Zr3d に対して、Zr₇O₈N₄由来のO1s とN1s の結合エネルギーは酸素流量を増加させる ことで低下するが、これは陰イオンの欠陥が 埋まることで、相対的に1つのO、N原子 に対するZrの陽イオン数が減少するためと 考えられる。

以上のことから、薄膜中のジルコニウム酸 窒化物は、酸素の増加に伴って欠陥が少なく なり、Zr 一個あたりの酸素の割合が大きく なっていくことが分かった。

4. まとめ

反応性スパッタリング法により作成した Zr-O-N 薄膜の構造を評価した。XRD 測定の 結果より、Zr-O-N 薄膜の結晶構造は酸素流 量が増加するとともに ZrN、Zr₇O₈N₄、 m-ZrO₂ とそれぞれの成分が混在しながら変 化することが分かった。試料の表面状態は XPS 測定の結果から、試料内部に比べ空気 酸化により酸素の割合が増加していること が分かった。また、スペクトルのピーク分離 を行うことで、試料中の Zr3d、O1s、N1s 電子の結合エネルギーの酸素流量による変 化が明らかとなった。これは Zr₂ON₂、 Zr₇O₈N₄ のようなジルコニウム酸窒化物が 薄膜作成時の酸素流量によって酸素欠陥の 割合が変化するためである。

参考文献

- [1]石原顕光, 金振煥, 前川陽太, 光島重徳, 太田 健一郎, 水素エネルギー協会 **33** (2008) p. 38.
- [2]G. Liu, H. M. Zhang, M. R. Wang, H. X. Zhong, J. Chen, J. Power Sources **172** (2007) p. 503.
- [3]P. Carvalho, J. M. Chappe, L. Cunha, S. Mendez, P. Alpuim, F. Vaz, E. Alvas, C. Rousselit, J. P. Espinos, A. R. Gonzalez-Elipe, J. Appl. Phys. **103** (2008) p. 104907.
- [4]M. Chisaka, A. Ishihara, K. Ota, H. Muramoto, Electrochim. Acta **113** (2013) p. 735.
- [5]坂本寬,九州大学大学院総合理工学報告 22 (2000) p.301.
- [6]M.Matuoka,S.Isotani,W.Sucasaire,Surf.Coat.Tech nol. **202** (2008) p. 3129.
- [7]H.Wiame,M.A.Centeno, J.Eur.Ceram.Soc. **18** (1998) p. 1299.