ドナー・アクセプタ分子を修飾した Mie 共鳴シリコンナノ粒子

の蛍光特性

大沢 慶祐^A、杉本 泰^A、藤井 稔^A 神戸大学大学院工学研究科電気電子工学専攻^A Fluorescence Properties of Mie Resonant Silicon Nanoparticles

Decorated with Donor - Acceptor Fluorophores

K. Ozawa ^A, H. Sugimoto ^A, M. Fujii ^A

Department of Electrical and Electronic Engineering, Kobe University A

To achieve higher sensitivity in biosensing/imaging, intensive studies on combination of fluorescence enhancement and Förster resonance energy transfer (FRET) of dye molecules have been performed. Most of the studies have focused on the localized surface plasmon resonance of metal nanoparticles. However, there remain problems due to the Ohmic loss of metal nanoparticles, resulting in fluorescence quenching of dye molecules. Here, we employ low-loss silicon nanoparticles (Si NPs) with Mie resonances in the visible range for further control of fluorescence of dye molecules. We fabricate the Si NPs with 100-200 nm in diameters functionalized with donor-acceptor fluorophores, and investigate the florescence spectral shapes and FRET efficiency as a function of Si NP diameters. By combination with electromagnetic calculations, we discuss the effect of Mie resonance of Si nanoparticle on florescence spectral shapes and FRET efficiency.

1. はじめに

蛍光を用いたバイオセンシング・イメージン グの高感度化に向けて、光学的な共鳴を示すナ ノ粒子による蛍光増強を利用した研究が多数 報告されている。さらに、2 種類の蛍光分子 間で起こる Förster 共鳴エネルギー移動 (FRET)を利用した手法では、共鳴による蛍 光とエネルギー移動レートの双方を増強す る試みも進んでいる。これまでに、金属ナノ 粒子の局在表面プラズモン共鳴を利用した 研究が報告されてきた^{1,2}。しかし、金属材料 は光損失が大きいため、蛍光の消光や光照射 下での発熱による蛍光体の劣化などが課題 となっている。

金属ナノ粒子に代わる材料として、我々は 高い屈折率と低い消光係数により可視光域 で低損失な Mie 共鳴を示すシリコンナノ粒 子(Si NP)に着目している。これまでに、Si ナ ノ粒子コアに蛍光分子を修飾した複合ナノ粒 子を開発し、Mie 共鳴のパーセル効果と蛍光増 強を実証している³。本研究では、粒径 100-200 nm の Si NP にドナー・アクセプタ蛍光 分子(FITC・RITC)を修飾し、発光スペクト ル形状と FRET 効率の粒径依存性を評価す る。また、電磁気計算と組み合わせることで、 Si NP の Mie 共鳴が蛍光スペクトルの形状 と FRET 効率に与える影響を議論する。

2. 試料作製方法

図1(a)に当研究室で独自に開発したSiNP のTEM 像を示す。本材料は高い真球性と結 晶性を持つ⁴。図1(b)にFITC・RITCの励 起・発光スペクトルを示す。スペクトルに重 なりがあることから、それぞれがドナー・ア クセプタとしての機能を果たす。

図 1(c)に Si@(FITC,RITC)の作製方法を 示す。まず、Si NP 表面にシランカップリン グ剤(APTES)を修飾し、アミノ基終端の粒 子を得た。その後、FITC・RITC と化学結合 させることで、Si@(FITC, RITC)を作製した。

図 1. (a) Si ナノ粒子の TEM 像。スケールバ ーは 200 nm。(b) FITC・RITC の励起スペクト ル(破線)、及び発光スペクトル(実線)。灰色の 部分は FITC の発光スペクトルと RITC の励起 スペクトルの重なりを表す。 (c) Si@(FITC, RITC)の作製方法。

3.実験結果と考察

図 2(a) にドナーのみを修飾した粒子 (Si@FITC)と、ドナー・アクセプタを修飾し た粒子(Si@(FITC,RITC))の散乱スペクトル を示す。これらスペクトル形状はよく一致し ており、共鳴波長から推定される粒径は105 nm である。また、磁気双極子(MD)共鳴をド ナーとアクセプタの発光波長以下に示す。図 2(b)に同一粒子の発光スペクトルを示す。な お、励起波長は488 nm とし、ドナーを選択 的に励起した。Si@(FITC,RITC)ではドナー の発光が弱まり、アクセプタの発光が現れて いることから、FRET が確認できる。

図 2. Si@FITC 及び Si@ (FITC, RITC) の (a) 散乱 スペクトル及び (b) 発光スペクトル (励起波 長:488 nm)。緑色と黄色の領域はそれぞれド ナー分子とアクセプタ分子の発光波長を示 す。

次に、発光スペクトルの粒径依存性を調べ た。図 3(a)に粒径 115 nm から 135nm まで の粒子の散乱スペクトルを示す。粒径が大き くなるにつれて、MD 共鳴がドナーの発光波 長からアクセプタの発光波長まで遷移して いる。図 3(b)にそれぞれの粒子の発光スペ クトルを示す。粒径 115 nm の粒子(黒実線) ではドナーに発光ピークを示すが、粒径の増 加に伴いピークがアクセプタ側にシフトし ている。発光ピークは MD 共鳴波長と一致 しており、パーセル効果による蛍光増強に起 因すると考えられる。図3(c)に、それぞれの 粒子についてドナーとアクセプタの発光強 度(ドナー:505nm、アクセプタ:565 nm) の比に示す。ドナーとアクセプタの発光波長 に共鳴を示さない粒径 105 nm の粒子(図 2) では比が 0.76 となった。一方、共鳴波長を ドナーとアクセプタの発光波長に示す粒径 115 nm と 135 nm の粒子では、比がそれぞ れ 0.53 と 2.8 となった。これは、Mie 共鳴

によりドナー・アクセプタを選択的に増強で きることを示している。

図 3. 粒径の異なる粒子の(a)散乱スペクトル 及び(b)発光スペクトル。添え字は粒径を示 す。(c)はドナー分子とアクセプタ分子の発光 強度(ドナー分子: 505 nm、アクセプタ分子: 565 nm)の比を示す。

次に、FRET 効率を評価した。FRET 効率 とは、ドナーの全ての緩和レートのうちエネ ルギー移動レートが占める割合であり、 FRET 効率ηは以下の式で表される。

 $\eta = k_{FRET}/(k_{rad} + k_{nonr} + k_{FRET})$ (1) $k_{rad} \geq k_{nonr}$ はそれぞれ輻射・非輻射レート、 k_{FRET} はエネルギー移動レートを表す。また、 アクセプタがある場合とない場合のドナー の発光強度をそれぞれ $I_{D0} \geq I_{DA}$ とすると、

$$\eta = 1 - I_{DA} / I_{D0}$$
 (2)

と表される。図4に(a)粒径115 nmと(b)132 nmのSi@FITC、Si@(FITC,RITC)の散乱ス ペクトルと発光スペクトルを示す。図2及び 図4の結果から、式(2)を用いて計算した FRET 効率を表1に示す。粒径によりFRET 効率が変化し、特にドナーに共鳴波長を示す 粒径115 nmの粒子ではFRET 効率が35% まで低下した。

図 4. (a) 粒径 115 nm と(b) 粒径 135 nm の粒子 の散乱スペクトル(灰色) および発光スペクト ル。Si@FITC が緑実線、Si@(FITC, RITC) は赤実 線で示されている。また、緑色の領域はドナー 分子の発光波長を示す。

表 1. FRET 効率の測定結果

Diameter (nm)	FRET efficiency (%)	I _{D0} (arb. units)	I _{DA} (arb. units)
105	61.1	253	98.3
115	35.0	397	258
135	45.2	213	123

最後に、ドナーのエネルギー移動レートと 輻射・非輻射レートの増強度の電磁気計算を 行った。図 5(a)は、粒径 115 nm の粒子につ いて、ドナーを粒子表面から 5 nm 離れた位 置に平行方向に配置したときのエネルギー 移動レートの増強度の計算結果である。 FRET が起こるドナーの近傍(~5nm 以内)で は増強度が1となり、エネルギー移動レート は変化しない。図 5(b)は同様の条件におけ る、パーセル効果による輻射・非輻射レート の増強度の計算結果である。共鳴波長におけ る増強度はそれぞれおよそ6と3であり、エ ネルギー移動レートよりも大きく増強され る。以上の結果から、蛍光スペクトルの形状 変化と蛍光 FRET 効率の変化は Mie 共鳴の パーセル効果に起因することが示された。

図 5. 粒径 115 nm の Si ナノ粒子による、ドナ ーのレートの増強度。ドナーは粒子表面から 5 nm 離れた位置に平行方向に配置されている。 (a)はエネルギー移動レートの増強度を示す。 白矢印はドナーを表し、波長は 508 nm とした。 (b)は輻射・非輻射緩和レートの増強度を示 す。

4.まとめ

本研究では、シリコンナノ粒子にドナー・ アクセプタ分子を修飾し、蛍光スペクトル形 状と FRET 効率の粒径依存性を評価した。 単一ナノ粒子の光学特性を評価した結果、粒 径を変えることでドナー・アクセプタを選択 的に増強できることを実証した。また、 FRET 効率についても制御可能であること が示された。最後に、電磁気計算から得た Mie 共鳴によるドナーのエネルギー移動レ ートと輻射・非輻射レートの増強度から、上 記の結果は Mie 共鳴のパーセル効果に起因 することが示された。

参考文献

- S. Bidault, A. Devilez, P. Ghenuche, B. Stout, N. Bonod and J. Wenger, ACS Photonics, 2016, 3, 895–903.
- 2 S. Hou, Y. Chen, D. Lu, Q. Xiong, Y. Lim and H. Duan, *Adv. Mater.*, 2020, **32**, 1–7.
- M. Adachi, H. Sugimoto, Y. Nishimura,
 K. Morita, C. Ogino and M. Fujii, *Small*,
 2023, **19**, 2207318–2207326.
- 4 H. Sugimoto and M. Fujii,
 Nanotechnology, 2021, **32**, 452001–
 452014.