電子強誘電体 LuFe₂O₄ における分極異方性の超高速制御

東北大院理^A,東工大理学院^B,岡山大院自然^C,量研機構^D

水上龍星^A, 鶴岡稜平^A, 伊藤弘毅^A, 川上洋平^A, 干洪武^B, 腰原伸也^B,

沖本洋一^B,井上直希^C,西田銀一^C,池田直^C,藤原孝将^D,岩井伸一郎^A

Ultrafast control of polarization anisotropy in electronic Ferroelectric LuFe₂O₄

Tohoku Univ.^A, Tokyo Tech.^B, Okayama Univ.^C, QST^D

R. Minakami^A, R. Tsuruoka^A, H. Itoh^A, Y. Kawakami^A, H. Yu^B, S. Koshihara^B,

Y. Okimoto^B, N. Inoue^C, G. Nisida^C, N. Ikeda^C, K. Fujiwara^D, and S. Iwai^A

Electronic ferroelectrics attract much attention because of their possible ultrafast and large responses which are attributed to electronic origins. We have demonstrated ultrafast anisotropy changes of ferroelectric polarization in a typical electronic ferroelectric LuFe₂O₄. Under the strong terahertz (THz) electric field of 250 kV/cm, ca. 135 % increase of second harmonic generation (SHG) is realized. That is 10~100 times larger than those in other ferroelectrics for ~100 kV/cm class THz field application. Time dependent change of the SHG anisotropy during the THz field application shows ultrafast modulation of the polarization orientation.

1. はじめに

電子強誘電体は、電子間のクーロン反 発を起源として空間反転対称性が破れた 物質である。従来型(変位型や秩序無秩 序型)と異なり、大きな構造変化を伴わ ない巨視的な電荷の偏りが、強誘電転移 の主要因となっている。このことは、外 部電場に対する分極の応答が超高速かつ 巨大であることを予感させる。本研究で は、代表的な電子強誘電体の候補物質と して約 20 年に渡り議論され続けてきた 層状鉄酸化物 RFe₂O₄(R = Yb, Lu)に注 目する[1]。

RFe₂O₄(図 1(a)左)は、鉄からなる Fe-O 層と希土類からなる R-O 層が c 軸方 向に積層した構造を有し、Fe-O 層では 三角格子面が二枚重なっていることから W-layer と呼ばれている(図 1(a)右)。鉄

図 1: (a)RFe₂O₄の結晶構造、(b)実験配 置の模式図

イオンの平均価数は 2.5 価だが、電子間 クーロン反発が強いため転移温度(~ 330 K)以下では 2 価と 3 価の鉄イオン が W -layer 内で整列し、3 倍周期の電荷 秩序を形成する[2]。ごく最近、第二高

図 2: (a)励起光として用いた THz 電場の時間波形、(b) ΔI_{SH} の時間発展と基本波偏光 依存性を示した 2D プロット、(c)~(f)ある時刻での I_{SH} 偏光依存性の極座標プロット

調波発生(SHG)の測定により、この電荷 秩序が強誘電分極を形成することが明ら かになった。さらにその異方性測定によ り、点群は Cm に属し、ac 面内に分極 を持つことも分かっている[3,4]。強誘 電分極のダイナミクスとしては、近赤外 光による励起が、分極方向の変化を生じ ることが、近赤外光励起—SHG プロー ブ測定により明らかにされた[5]。

一方、最近、電子強誘電体を含む強誘 電体において、>100 kV/cm のいわゆる 高強度テラヘルツ(THz)光による分極応 答が精力的に調べられている[6-8]。こ の実験手法では、バンド間励起によるキ ャリアの生成や熱の発生を伴わない、よ り直接的な分極の高速制御が期待でき る。本研究では、電子強誘電体 LuFe₂O₄ に対し、THz 電場を励起光とした SHG プローブ測定を行い、方位まで含めた強 誘電分極の超高速制御を目指す。

2. 実験手法

本研究では LuFe₂O₄単結晶の、三角格子 面が含まれる ab 面に対し反射配置で高強 度 THz 電場励起-SHG プローブ測定を行 った(図 1(b))。波面傾斜パルスによりニオ ブ酸リチウムで発生させた THz 電場をポ ンプ光とし、電場を b 軸に平行(E_{THz} || b) に印加した。プローブ光として波長 800 nm(幅 25 フェムト秒)の直線偏光パルスを 入射し、強誘電分極によって生じた SHG(400 nm)の強度(I_{SH} || b)を光電子増倍 管で検出した。基本波偏光角 θ (θ =0° が a 軸、90° が b 軸に対応)に対する I_{SH} の変 化を、以降では、「SH の異方性」と呼ぶ。

3. 実験結果と考察

3.1. 実験結果

図 2 (a)に THz 電場波形を、(b)に SH の 異方性の時間変化を示した 2D プロット(横 軸が遅延時間、縦軸がθ)を示す。グレー

図 3: (a)それぞれの時刻での、実験結果(黒丸)とフィッティング結果(黒線)。(b)強誘 電分極が b 軸方向に揺れる様子を表した模式図。(c)テンソル成分の時間発展。マルが d₂₁、バツが d₂₂成分を示している。

スケールで表した変化率は、定常状態にお ける J_{H} の最大値を基準としている。SH は E_{THz} に伴ってサブピコ秒スケールで増減し ており、変化率は+135%から-58%にも及 んだ。例えばよく知られた LiNbO₃ では 100 kV/cm の電場で SH 変化率は 0.8 %で あり[7]、他の物質でも数%から数 10 %の 変化率であることと比較すると[6, 8]、 LuFe₂O₄ において観測された SHG の強度 変化は際立って(10 倍~100 倍)大きい。

次に、SHG の異方性が、どのように時 間発展するのかを見てみよう。図 2(c)-(f) に各時刻における SHG の基本波偏光依存 性を示す。電場の印加とともに、 θ = 45°で SHG が増加、135°では減少し(図 2(d))、その後 E_{THz} のピーク位置(t_d = 0 ps 近傍)において θ = 45°の SHG は最大 値 (θ = 135°は最小値)を示す(図 2(e))。 その後、 E_{THz} の減少に伴って 45°が減少 し、 E_{THz} の符号が負になる t_d =0.4 ps では 135 °方向に増加する(図2(f))。以上のように、定常状態における SH 異方性(図2(c))の4回回転対称性が、E_{THz}の印加によって破れている。このことはE_{THz}による強誘電分極の変調が分極の増減だけでなく、その方位まで変化させることを示している。

3.2. 非線形光学テンソルによる SH 異方性の解析

測定した SH の異方性の THz 電場による の変化を考察するために、非線形光学テン ソル $\chi^{(2)}(d_{ij})$ を用いて解析を行った。先行 研究によれば LuFe₂O₄ は(基底状態で)ac 面内に分極を持っておりその点群は Cm(ac 面がミラー面)である[3]。この対称性を反 映して $\chi^{(2)}$ テンソルは次のように表される。

軸平行で観測される SHG の異方性は d₂₆を 使って下記のように書き表せる。

$$I_{SH} \propto \left(P_b^{(2\omega)}\right)^2$$
$$= \left(2\epsilon_0 d_{26} \sin \theta \cos \theta \left| \mathbf{E}_0^{(\omega)} \right|^2 \right)^2$$

先行研究では、この式で実験結果をフィッ ティングすることにより定常状態の SH 異 方性を再現している[3]。

次に THz 電場印加時の $\chi^{(2)}$ について考 える。 $E_{THz}(|| b)$ はミラー面に対して垂直 であることから、分極の向きがac面内から はずれ、対称性が破れると仮定してみよう (図 3(a))。この時の $\chi^{(2)}$ はすべての成分が 許容になるため以下のようにあらわすこと ができる。

$$d_{ij} = \begin{pmatrix} d_{11} & d_{12} & d_{13} & d_{14} & d_{15} & d_{16} \\ d_{21} & d_{22} & d_{23} & d_{24} & d_{25} & d_{26} \\ d_{31} & d_{32} & d_{33} & d_{34} & d_{35} & d_{36} \end{pmatrix}$$

b 軸方向に観測される二次の分極は新たに
 d₂₁,d₂₂を加え

$$P_{b}^{(2\omega)} = \epsilon_{0} (2d_{26}E_{a}^{(\omega)}E_{b}^{(\omega)} + d_{21}\left[E_{a}^{(\omega)}\right]^{2} + d_{22}\left[E_{b}^{(\omega)}\right]^{2})$$

と表される。

図 3(b)に示すようにこの式を用いて SH の異方性をよく再現することができ、テン ソル成分の値を得られる。この解析を全て の遅延時間(60測定点)に対して行うこと によって求めた $\chi^{(2)}$ の時間発展を、図 3(c) に示す。縦軸は定常状態における d₂₆ を 1 としたときのそれぞれの成分の比であり、 マルが d₂₁、バツが d₂₂成分を表している。

定常状態で0である d₂₁および d₂₂が E_{THz} に伴って有限の値を持つことは、Cm 対称 性が破れていることを意味している。この ことは b 軸方向に電場をかけることによっ て、ac 面内にある強誘電分極が b 軸方向に 傾くことを示唆している(図 3(a))。各テン ソル成分の大きさは強誘電分極の大きさや 方位を詳しく解析する手掛かりになるため、 今後より詳しい議論が必要である。

4. まとめ

電子強誘電体 LuFe₂O₄ における高強度 THz 電場誘起 SHG 測定を行った。強誘電 分極により発生する SHG は E_{THz} によりサ ブピコ秒スケールで巨大(最大変化率 135%)な変化を示す。また、 $\chi^{(2)}$ テンソル を用いた SH 異方性の解析により分極のダ イナミクスを明らかにした。すなわち、電 場の印加時間とともにテンソル成分は印加 電場と同位相で増減し、強誘電分極が垂直 にかけられた電場によって、もともと持っ ていた対称性を破って変調される。

参考文献

[1]N. Ikeda et al., J. Phys. Soc. Japan 69, 1526 (2000)

[2] N. Ikeda et al., Nature 436, 1136 (2005)
[3] K. Fujiwara et al., Sci Rep. 11, 4277 (2021)

[4] H. Yu et al., Materials 16, 1989 (2023)

[5]于ほか,日本物理学会 2021 年度秋季大 会 20aE1-1

[6] T. Miyamoto et al., Nat. Commun. 4, 1(2013)

[7] A. vonHoegen et al., Nature 555, 79(2018)

[8] T. Miyamoto et al., Sci. Rep. 8, 15014(2018)