科目名	データ駆動科学A
講義題目(テーマ)	データ駆動科学入門
担当教員	東京大学 岡田真人
- 年度・学期	2023年 集中
単位数	1
学修成果とその割合	
1.高度な専門的知識・技能及び研究力	70
2.学際的領域を理解できる深奥な教養力	30
3.グローバルな視野と行動力	0
4.地域社会を牽引するリーダー力	0
その他	0
使用言語	「日本語」による授業
教科書・資料の言語	「日本語」のテキスト
実務経験を活かした授業	非該当
授業の形態	講義
対面・遠隔の別	遠隔形式
授業の方法	Zoomを用いた遠隔授業と、オンデマンド受講
	ベイズ推定に基づく計測と情報科学の融合の基礎と、その実勢例に
授業の目的	ついて理解する
	以下の事柄について講義を行う。
	(1) データ駆動科学導入 (2)最小二乗法の復習 (3)ベイズ推論導
授業の概要	入、確率的定式化、事後分布の計算、ノイズの推定。(4)モデル選
	択. (5)ベイズ推論まとめ. (6)ベイズ的スペクトル分解. (7)ES-
	SVM. (8) 演習
学修目標	
子 修 日 惊	(1) データ駆動科学導入 (2)最小二乗法の復習 (3)ベイズ推論導
	入、確率的定式化、事後分布の計算、ノイズの推定。(4)モデル選
┃ A水準(到達すれば「優 に相当)	択. (5)ベイズ推論まとめ. (6)ベイズ的スペクトル分解. (7)ES-
	SVM. (8) 演習について、十分に理解し、講義内容を他人に正確に
	説明できる。
	(1) データ駆動科学導入 . (2)最小二乗法の復習. (3)ベイズ推論導
	入、確率的定式化、事後分布の計算、ノイズの推定. (4)モデル選
C水準(到達すれば「可」に相当)	択.(5)ベイズ推論まとめ.(6)ベイズ的スペクトル分解.(7)ES-
	SVM. (8) 演習について、概ね理解し、講義内容の要点をまとめる
	ことができる。
評価方法・基準	講義への積極的な参加とMoodleで提出されたレポートの到達度か
可 週刀 丛 坐牛	ら評価する。
各回の授業内容	1
回 授業テーマ (5文字以上100文字以内)	内容概略(10文字以上200文字以内)
1 データ駆動科学導入	データ駆動科学を研究するに至った経緯
2 最小二乗法の復習	一次関数の最小二乗法について復習する
	ハ内外・東リー小Aにファン区日10

3	ベイズ推論導入、確率的定式化、事後分 布の計算、ノイズの推定	ベイズ推論の導入を行う。そのための一次関数の確率的定式化を行う。ベイズの定理の事後確率を理解し、一次関数の場合の事後分布を解析的に求める。さらにノイズの分散の推定を解析的に行う。
4	モデル選択	一次関数のモデル選択の解析計算を行う
5	ベイズ推論まとめ	一次関数のベイズ推論に関して、一次関数の確率的定式化を行い、 一次関数の場合の事後分布を解析的に求め、ノイズの分散の推定を 解析的に行い、モデル選択の解析計算を行う.
6	ベイズ的スペクトル分解	スペクトル分解へのベイズ推論の導入
7	ES-SVM	全状態探索サポートベクトルマシン(ES-SVM)の説明
8	講義内容に基づく演習	授業で興味を持った内容をまとめる。可能であれば自分の研究テーマもしくは学問的な興味と関連させて、新たな研究プロジェクトを 提案する
授業為	外学修時間の目安	本科目は、45時間の学修が必要な内容で構成されている。授業は 16時間分(2h×8コマ)となるため、29時間分相当の事前・事後学 修(課題等含む)が、授業の理解を深めるために必要となる。
	外学修時間の目安 	16時間分(2h×8コマ)となるため、29時間分相当の事前・事後学修(課題等含む)が、授業の理解を深めるために必要となる。
	フード	16時間分(2h×8コマ)となるため、29時間分相当の事前・事後学
+-	フード	16時間分(2h×8コマ)となるため、29時間分相当の事前・事後学修(課題等含む)が、授業の理解を深めるために必要となる。 ベイズ推論、最小二乗法、スペクトル分解
キー ¹ テキ: 参考:	フード	16時間分(2h×8コマ)となるため、29時間分相当の事前・事後学修(課題等含む)が、授業の理解を深めるために必要となる。 ベイズ推論、最小二乗法、スペクトル分解 授業の際に資料を配布する。
キー ¹ テキ: 参考: オフ	フード スト 文献	16時間分(2h×8コマ)となるため、29時間分相当の事前・事後学修(課題等含む)が、授業の理解を深めるために必要となる。 ベイズ推論、最小二乗法、スペクトル分解 授業の際に資料を配布する。 特になし データ駆動型社会を担う人材育成プログラム事務室に連絡を取るこ